MapReduce 自定义outputFormat

  1. 写一个类继承 FileOutputFormat 泛型为最终输出的数据类型

    public class MyFileOutputFormat extends FileOutputFormat<Text, NullWritable> {
  2. 重写getRecordWriter(TaskAttemptContext context)方法

    maptask或者reducetask在最终输出时,先调用OutputFormat的getRecordWriter方法拿到一个RecordWriter 然后再调用RecordWriter的write(k,v)方法将数据写出
    
    @Override
        public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext context) throws IOException, InterruptedException {

public class LogEnhanceOutputFormat extends FileOutputFormat<Text, NullWritable> {

    @Override
    public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext context) throws IOException, InterruptedException {

        FileSystem fs = FileSystem.get(context.getConfiguration());

        Path enhancePath = new Path("D:/temp/en/log.dat");
        Path tocrawlPath = new Path("D:/temp/crw/url.dat");

        FSDataOutputStream enhancedOs = fs.create(enhancePath);
        FSDataOutputStream tocrawlOs = fs.create(tocrawlPath);

        return new EnhanceRecordWriter(enhancedOs, tocrawlOs);
    }

    /**
     * 构造一个自己的recordwriter
     * 
     * @author
     * 
     */
    static class EnhanceRecordWriter extends RecordWriter<Text, NullWritable> {
        FSDataOutputStream enhancedOs = null;
        FSDataOutputStream tocrawlOs = null;

        public EnhanceRecordWriter(FSDataOutputStream enhancedOs, FSDataOutputStream tocrawlOs) {
            super();
            this.enhancedOs = enhancedOs;
            this.tocrawlOs = tocrawlOs;
        }

        @Override
        public void write(Text key, NullWritable value) throws IOException, InterruptedException {
            String result = key.toString();
            // 如果要写出的数据是待爬的url,则写入待爬清单文件 /logenhance/tocrawl/url.dat
            if (result.contains("tocrawl")) {
                tocrawlOs.write(result.getBytes());
            } else {
                // 如果要写出的数据是增强日志,则写入增强日志文件 /logenhance/enhancedlog/log.dat
                enhancedOs.write(result.getBytes());
            }

        }

        @Override
        public void close(TaskAttemptContext context) throws IOException, InterruptedException {
            if (tocrawlOs != null) {
                tocrawlOs.close();
            }
            if (enhancedOs != null) {
                enhancedOs.close();
            }

        }

    }

}
// 要控制不同的内容写往不同的目标路径,可以采用自定义outputformat的方法
        job.setOutputFormatClass(LogEnhanceOutputFormat.class);

        FileInputFormat.setInputPaths(job, new Path("D:/srcdata/webloginput/"));

        // 尽管我们用的是自定义outputformat,但是它是继承制fileoutputformat
        // 在fileoutputformat中,必须输出一个_success文件,所以在此还需要设置输出path
        FileOutputFormat.setOutputPath(job, new Path("D:/temp/output/"));

        // 不需要reducer
        job.setNumReduceTasks(0);
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
MapReduce是一种大数据处理框架,它能够在分布式集群上进行并行计算。其中,自定义比较器是MapReduce的一种功能,允许用户定义自己的比较方法来排序输出结果。 使用自定义比较器可以实现复杂的排序逻辑,而不是仅仅使用基本的字典序排序。例如,可以使用自定义比较器来按照日期、数字或其他自定义字段排序。 使用自定义比较器的方法是在MapReduce程序中实现自定义比较器类,并实现其中的compare方法。然后,在MapReduce作业的配置中设置自定义比较器类。 例如,以下是一个使用自定义比较器的MapReduce程序的示例: ```java import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static class MyMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class MyReducer extends Reducer<Text,IntWritable,Text,IntWritable>

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我们始终是路人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值