Deepspeed的zero2和zero3的配置文件Demo
Zero2
使用下面这个文件,在8*H100的机器上训练了Qwen2.5-7B模型。上下文窗口8K,参数大小bf16,batch_size = 8(num_gpu)*2(per_gpu_batch_size)*4(gradient_accumulation_steps) =64,deepspeed采用zero2,显存占用约78G,数据量1.4B tokens,训练时长8 hour。
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 2,
"offload_optimizer": {
"device": "none",
"pin_memory": true
},
"allgather_partitions": true,
"allgather_bucket_size": 2e8,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 2e8,
"contiguous_gradients": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 100,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}
Zero3
使用下面这个文件,在8*H100的机器上训练了Qwen2.5-32B模型。上下文窗口8K,参数大小bf16,batch_size = 8(num_gpu)*2(per_gpu_batch_size)8(gradient_accumulation_steps) =128,deepspeed采用zero3,显存占用约65G,内存占用约653G(还有数据占的少量显存,数据量为0.06B tokens),训练时长2 hour。
使用下面这个文件,在8H100的机器上训练了Qwen2.5-3B模型。上下文窗口32K,参数大小bf16,batch_size = 8(num_gpu)*1(per_gpu_batch_size)*1(gradient_accumulation_steps) =8,deepspeed采用zero3,显存占用约79G,内存占用约91G(还有数据占的少量显存,数据量为0.06B tokens),训练时长1 hour。
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu"
},
"offload_param": {
"device": "cpu"
},
"overlap_comm": true,
"stage3_gather_16bit_weights_on_model_save": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 100,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}