目录
一、降噪
定义:
降噪是指从带有噪声的信号或图像中,去除或减少噪声的过程。噪声是由于信号采集、传输或处理过程中引入的不必要或无用的信号,它会降低信号或图像的质量和可靠性。
在数字信号处理中,降噪是一种常见的预处理方法,它能够去除信号中的噪声,使信号更加清晰、准确和可靠。降噪可以提高信号的信噪比和分辨率,减少测量误差和失真,提高信号处理和识别的准确性和可靠性。
在图像处理中,降噪也是一种重要的处理方法,它能够去除图像中的噪点、斑点、条纹、雾霾等噪声,使图像更加清晰、细节更加丰富,从而提高图像的质量和观感效果。常用的图像降噪方法包括中值滤波、高斯滤波、均值滤波、小波变换等。
总之,降噪是在信号或图像处理中至关重要的一步,它能够提高信号或图像的质量和可靠性,从而为后续的信号处理和分析提供更加准确和可靠的数据基础。
1.1定义卷积核
# 定义卷积核
kernel =np.array([[-1,-1,-1],[-1,9,-1],[-1,-1,-1]])
1.2对图像进行中值模糊处理
中值模糊
定义:是一种非常常用的图像处理方法,其基本原理是对图像中每个像素的周围像素灰度值进行排序,然后取排序后的中值作为该像素的灰度值。这种方法可以有效地降噪,去除图像中的细小噪点,保留图像的边缘信息,从而提高图像的质量和清晰度。
#对图像进行中值模糊处理
median = cv2.medianBlur(img, 5)
medianBlur()
函数的第一个参数是需要处理的输入图像,第二个参数是模糊半径,即卷积核的大小。半径越大,模糊效果越明显
总代码:
import cv2
import numpy as np
# 加载图像
img =cv2.imread(r"D:\tuxiang\cch.jpg")
# 定义卷积核
kernel =np.array([[-1,-1,-1],[-1,9,-1],[-1,-1,-1]])
#对图像进行中值模糊处理
median = cv2.medianBl