求解Ax=b

1.5. Ax=b的求解

(1)例子

对于一般向量b:

只有{\bf{b}}满足{b_3} - {b_1} - {b_2} = 0,方程组才有解。

推广到一般情况,当b在A列向量空间中时,Ax=b有解。

(2)特解与完整解

Ax=b的解为{​{\bf{x}}_p} + {​{\bf{x}}_N},其中{​{\bf{x}}_N}为A的零空间,{​{\bf{x}}_p}Ax=b的特解

(3) 一般情况

设矩阵{\bf{A}}m \times n,秩为(主元个数,显然r \le mr \le n)

  1. m = n = r,此时为方阵,且可逆

此时,每一列都为主列,没有自由列,零空间{​{\bf{x}}_N} = {\bf{0}}{\bf{x}} = {​{\bf{x}}_p},有唯一解。

  1. r = nm > n,即行数大于列数,{\bf{A}}为长条矩阵

此时,每一列都为主列,没有自由列,零空间{​{\bf{x}}_N} = {\bf{0}}{\bf{x}} = {​{\bf{x}}_p},此时有可能无解(b不在列空间中)或者具有唯一解。

  1. r = mn > m,即列数大于行数,{\bf{A}}为扁平矩阵

此时,有r个主列,n-r个自由列,零空间{​{\bf{x}}_N}肯定有非零解;且肯定能找到{​{\bf{x}}_p},应为r=m,意味着列空间铺满整个{R^m},无论b取何值,肯定在子空间内。因此,有无数个解。

  1. r < mr < n,最一般情况

此时,有r个主列,n-r个自由列,零空间{​{\bf{x}}_N}肯定有非零解;但是不一定能找到{​{\bf{x}}_p},因为列空间没有铺满整个{R^m}。若b在列空间内,则有无数个解,否则,无解。

总结:把A整理乘简化行阶梯形式rref,可以看出对应的秩的情况

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值