带权最短路 Dijkstra、SPFA、Bellman-Ford、ASP、Floyd-Warshall 算法分析

图论中,用来求最短路的方法有很多,适用范围和时间复杂度也各不相同。

本文主要介绍的算法的代码主要来源如下:

  1. Dijkstra: Algorithms(《算法概论》)Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani;《算法竞赛入门经典—训练指南》刘汝佳、陈峰。
  2. SPFA (Shortest Path Faster Algorithm): Data Structure and Algorithms Analysis in C, 2nd ed.(《数据结构与算法分析》)Mark Allen Weiss.
  3. Bellman-Ford: Algorithms(《算法概论》)Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani.
  4. ASP (Acyclic Shortest Paths): Introduction to Algorithms - A Creative Approach(《算法引论—一种创造性方法》)Udi Manber.
  5. Floyd-Warshall: Data Structure and Algorithms Analysis in C, 2nd ed.(《数据结构与算法分析》)Mark Allen Weiss.

它们的使用限制和运行时间如下:

Dijkstra: 不含负权。运行时间依赖于优先队列的实现,如 O((∣V∣+∣E∣)log∣V∣)O((∣V∣+∣E∣)log∣V∣)
SPFA: 无限制。运行时间O(k⋅∣E∣) (k≪∣V∣)O(k⋅∣E∣) (k≪∣V∣)
Bellman-Ford:无限制。运行时间O(∣V∣⋅∣E∣)O(∣V∣⋅∣E∣)
ASP: 无圈。运行时间O(∣V∣+∣E∣)O(∣V∣+∣E∣)
Floyd-Warshall: 无限制。运行时间O(∣V∣3)

其中 1~4 均为单源最短路径 (Single Source Shortest Paths) 算法; 5 为全源最短路径 (All Pairs Shortest Paths) 算法。顺便说一句,为什么没有点对点的最短路径?如果我们只需要一个起点和一个终点,不是比计算一个起点任意终点更节省时间么?答案还真不是,目前还没有发现比算从源点到所有点更快的算法。

图的表示

本文中,前四个算法的图都采用邻接表表示法,如下:

  1. struct Edge  
  2. {  
  3.     int from;  
  4.     int to;  
  5.     int weight;  
  6.   
  7.     Edge(int f, int t, int w):from(f), to(t), weight(w) {}  
  8. };  
  9.   
  10. int num_nodes;  
  11. int num_edges;  
  12. vector<Edge> edges;  
  13. vector<int> G[max_nodes]; // 每个节点出发的边编号  
  14. int p[max_nodes]; // 当前节点单源最短路中的上一条边  
  15. int d[max_nodes]; // 单源最短路径长  
struct Edge
{
    int from;
    int to;
    int weight;

    Edge(int f, int t, int w):from(f), to(t), weight(w) {}
};

int num_nodes;
int num_edges;
vector<Edge> edges;
vector<int> G[max_nodes]; // 每个节点出发的边编号
int p[max_nodes]; // 当前节点单源最短路中的上一条边
int d[max_nodes]; // 单源最短路径长

Dijkstra 方法

Dijkstra 方法依据其优先队列的实现不同,可以写成几种时间复杂度不同的算法。它是图论-最短路中最经典、常见的算法。关于这个方法,网上有许多分析,但是我最喜欢的还是《算法概论》中的讲解。为了理解 Dijkstra 方法,首先回顾一下无权最短路的算法。无权最短路算法基于 BFS,每次从源点向外扩展一层,并且给扩展到的顶点标明距离,这个距离就是最短路的长。我们完全可以仿照这个思路,把带权图最短路问题规约到无权图最短路问题——只要把长度大于 1 的边填充进一些「虚顶点」即可。如下图所示。

Dijkstra

这个办法虽然可行,但是显然效率很低。不过,Dijkstra 方法EC,EB,ED分别出发,经过一系列「虚节点」,依次到达D,B,C 。为了不在虚节点处浪费时间,出发之前,我们设定三个闹钟,时间分别为4,3,2提醒我们预计在这些时刻会有重要的事情发生(经过实际节点)。更一般地说,假设现在我们处理到了某个顶点u,和u相邻接的顶点为v1,v2,…,vn,它们和uu的距离为d1,d2,…,dn。我们为v1,v2,…,vn各设定一个闹钟。如果还没有设定闹钟,那么设定为d ;如果设定的时间比d晚,那么重新设定为d(此时我们沿着这条路比之前的某一条路会提前赶到)。每次闹钟响起,都说明可能经过了实际节点,我们都会更新这些信息,直到不存在任何闹钟。综上所述,也就是随着 BFS 的进行,我们一旦发现更近的路径,就立即更新路径长,直到处理完最后(最远)的一个顶点。由此可见,由于上述「虚顶点」并非我们关心的实际顶点,因此 Dijkstra 方法的处理方式为:直接跳过了它们。

还需要解决的一个问题,就是闹钟的管理。闹钟一定是从早到晚按顺序响起的,然而我们设闹钟的顺序却不一定按照时间升序,因此需要一个优先队列来管理。Dijkstra 方法实现的效率严重依赖于优先队列的实现。一个使用标准库容器适配器 priority_queue 的算法版本如下:

  1. typedef pair<intint> HeapNode;  
  2. void Dijkstra(int s)  
  3. {  
  4.     priority_queue< HeapNode, vector<HeapNode>, greater<HeapNode> > Q;  
  5.     for (int i=0; i<num_nodes; ++i)  
  6.         d[i] = __inf;  
  7.   
  8.     d[s] = 0;  
  9.     Q.push(make_pair(0, s));  
  10.     while (!Q.empty()) {  
  11.         pair<intint> N = Q.top();  
  12.         Q.pop();  
  13.         int u = N.second;  
  14.         if (N.first != d[u]) continue;  
  15.         for (int i=0; i<G[u].size(); ++i) {  
  16.             Edge &e = edges[G[u][i]];  
  17.             if (d[e.to] > d[u] + e.weight) {  
  18.                 d[e.to] = d[u] + e.weight;  
  19.                 p[e.to] = G[u][i];  
  20.                 Q.push(make_pair(d[e.to], e.to));  
  21.             }  
  22.         }  
  23.     }  
  24. }  
typedef pair<int, int> HeapNode;
void Dijkstra(int s)
{
    priority_queue< HeapNode, vector<HeapNode>, greater<HeapNode> > Q;
    for (int i=0; i<num_nodes; ++i)
        d[i] = __inf;

    d[s] = 0;
    Q.push(make_pair(0, s));
    while (!Q.empty()) {
        pair<int, int> N = Q.top();
        Q.pop();
        int u = N.second;
        if (N.first != d[u]) continue;
        for (int i=0; i<G[u].size(); ++i) {
            Edge &e = edges[G[u][i]];
            if (d[e.to] > d[u] + e.weight) {
                d[e.to] = d[u] + e.weight;
                p[e.to] = G[u][i];
                Q.push(make_pair(d[e.to], e.to));
            }
        }
    }
}

Bellman-Ford:一个简单的想法

Dijkstra 方法的本质是进行一系列如下的更新操作:

d(v)=min{d(v), d(u)+l(u,v)}

然而,如果边权含有负值,那么 Dijkstra 方法将不再适用。原因解释如下

假设最终的最短路径为:

su1u2u3ukt

不难看出,如果按照 (s, u1), (u1, u2), ,(uk, t) 的顺序执行上述更新操作,最终t的最短路径一定是正确的。而且,只要保证上述更新操作全部按顺序执行即可,并不要求上述更新操作是连续进行的。Dijkstra 算法所运行的更新序列是经过选择的,而选择基于这一假设:st的最短路一定不会经过和s距离大于l(s, t)的点。对于正权图这一假设是显然的,对于负权图这一假设是错误的。

因此,为了求出负权图的最短路径,我们需要保证一个合理的更新序列。但是,我们并不知道最终的最短路径!因此一个简单的想法就是:更新所有的边,每条边都更新∣V∣−1次。由于多余的更新操作总是无害的,因此算法(几乎)可以正确运行。等等,为什么是∣V∣−1次?这是由于,任何含有∣V∣个顶点的图两个点之间的最短路径最多含有∣V∣−1条边这意味着最短路不会包含环。理由是,如果是负环,最短路不存在;如果是正环,去掉后变短;如果是零环,去掉后不变。

算法实现中唯一一个需要注意的问题就是负值圈 (negative-cost cycle)。负值圈指的是,权值总和为负的圈。如果存在这种圈,我们可以在里面滞留任意长而不断减小最短路径长,因此这种情况下最短路径可能是不存在的,可能使程序陷入无限循环。好在,本文介绍的几种算法都可以判断负值圈是否存在。对于 Bellman-Ford 算法来说,判断负值圈存在的方法是:在V1次循环之后再执行一次循环,如果还有更新操作发生,则说明存在负值圈。

Bellman-Ford 算法的代码如下:

  1. bool Bellman_Ford(int s)  
  2. {  
  3.     for (int i=0; i<num_nodes; ++i)  
  4.         d[i] = __inf;  
  5.   
  6.     d[s] = 0;  
  7.     for (int i=0; i<num_nodes; ++i) {  
  8.         bool changed = false;  
  9.         for (int e=0; e<num_edges; ++e) {  
  10.             if (d[edges[e].to] > d[edges[e].from] + edges[e].weight   
  11.                && d[edges[e].from] != __inf) {  
  12.                 d[edges[e].to] = d[edges[e].from] + edges[e].weight;  
  13.                 p[edges[e].to] = e;  
  14.                 changed = true;  
  15.             }  
  16.         }  
  17.         if (!changed) return true;  
  18.         if (i == num_nodes && changed) return false;  
  19.     }  
  20.     return false// 程序应该永远不会执行到这里  
  21. }  
bool Bellman_Ford(int s)
{
    for (int i=0; i<num_nodes; ++i)
        d[i] = __inf;

    d[s] = 0;
    for (int i=0; i<num_nodes; ++i) {
        bool changed = false;
        for (int e=0; e<num_edges; ++e) {
            if (d[edges[e].to] > d[edges[e].from] + edges[e].weight 
               && d[edges[e].from] != __inf) {
                d[edges[e].to] = d[edges[e].from] + edges[e].weight;
                p[edges[e].to] = e;
                changed = true;
            }
        }
        if (!changed) return true;
        if (i == num_nodes && changed) return false;
    }
    return false; // 程序应该永远不会执行到这里
}

注记:

  1. 如果某次循环没有更新操作发生,以后也不会有了。我们可以就此结束程序,避免无效的计算。
  2. 上述程序中第 11 行的判断:如果去掉这个判断,只要图中存在负值圈函数就会返回 false。否则,仅在给定源点可以达到负值圈时才返回 false

SPFA:一个改进的想法

看来,Bellman-Ford 算法多少有些浪费。这里介绍的 SPFA 可以算作是 Bellman-Ford 的队列改进版。在 Dijkstra 方法中,随着 BFS 的进行,最短路一点一点地「生长」。然而如果存在负权,我们的算法必须允许「绕回去」的情况发生。换句话说,我们需要在某些时候撤销已经形成的最短路。同时,我们还要改变 Bellman-Ford 算法盲目更新的特点,只更新有用的节点。SPFA 中,一开始,我们把源点 s放入队列中,然后每次循环让一个顶点u出队,找出所有与u邻接的顶点v,更新最短路,并当v不在队列里时将它入队。循环直到队列为空(没有需要更新的顶点)。
可以显示出 SPFA 和 Bellman-Ford 算法相比的一个重大改进的最经典的一个例子,就是图为一条链的情形。
容易看出,如果存在负值圈,这个算法将无限循环下去。因此需要一个机制来确保算法得以中止。由于最短路最长只含有∣V∣−1条边,因此如果任何一个顶点已经出队∣V∣+1次,算法停止运行
SPFA 的代码如下:

  1. bool in_queue[max_nodes];  
  2. int cnt[max_nodes];  
  3. bool SPFA(int s)  
  4. {  
  5.     int u;  
  6.     queue<int> Q;  
  7.     memset(in_queue, 0, sizeof(in_queue));  
  8.     memset(cnt, 0, sizeof(cnt));  
  9.     for (int i=0; i<num_nodes; ++i)  
  10.         d[i] = __inf;  
  11.   
  12.     d[s] = 0;  
  13.     in_queue[s] = true;  
  14.     Q.push(s);  
  15.     while (!Q.empty()) {  
  16.         in_queue[u=Q.front()] = false;  
  17.         Q.pop();  
  18.         for (int i=0; i<G[u].size(); ++i) {  
  19.             Edge &e = edges[G[u][i]];  
  20.             if (d[e.to] > d[u] + e.weight) {  
  21.                 d[e.to] = d[u] + e.weight;  
  22.                 p[e.to] = G[u][i];  
  23.                 if (!in_queue[e.to]) {  
  24.                     Q.push(e.to);  
  25.                     in_queue[e.to] = true;  
  26.                     if (++cnt[e.to] > num_nodes)  
  27.                         return false;  
  28.                 }  
  29.             }  
  30.         }  
  31.     }  
  32.     return true;  
  33. }  
bool in_queue[max_nodes];
int cnt[max_nodes];
bool SPFA(int s)
{
    int u;
    queue<int> Q;
    memset(in_queue, 0, sizeof(in_queue));
    memset(cnt, 0, sizeof(cnt));
    for (int i=0; i<num_nodes; ++i)
        d[i] = __inf;

    d[s] = 0;
    in_queue[s] = true;
    Q.push(s);
    while (!Q.empty()) {
        in_queue[u=Q.front()] = false;
        Q.pop();
        for (int i=0; i<G[u].size(); ++i) {
            Edge &e = edges[G[u][i]];
            if (d[e.to] > d[u] + e.weight) {
                d[e.to] = d[u] + e.weight;
                p[e.to] = G[u][i];
                if (!in_queue[e.to]) {
                    Q.push(e.to);
                    in_queue[e.to] = true;
                    if (++cnt[e.to] > num_nodes)
                        return false;
                }
            }
        }
    }
    return true;
}

我们已经给出 SPFA 的运行时间为O(kE) (k≪∣V)O。实际上,可以期望k<2。但是可以构造出使 SPFA 算法变得很慢的针对性数据。

Acyclic Shortest Path

如果图是无圈的(acyclic)(或称为有向无环图,DAG),那么情况就变的容易了。我们可以构造一个拓扑升序序列,由拓扑排序的性质,无圈图的任意路径中,顶点都是沿着「拓扑升序序列」排列的,因此我们只需要按照这个序列执行更新操作即可。显然,这样可以在线性时间内解决问题。

实现上,拓扑排序和更新可以一趟完成。这种算法的代码如下:

  1. int indegree[max_nodes];  
  2. void asp(int s)  
  3. {  
  4.     queue<int> Q;  
  5.     for (int i=0; i<num_nodes; ++i) {  
  6.         d[i] = __inf;  
  7.         indegree[i] = 0;  
  8.     }  
  9.     for (int i=0; i<num_edges; ++i)  
  10.         ++indegree[edges[i].to];  
  11.     for (int i=0; i<num_nodes; ++i)  
  12.         if (indegree[i] == 0) Q.push(i);  
  13.   
  14.     d[s] = 0;  
  15.     while (!Q.empty()) {  
  16.         int w = Q.front();  
  17.         Q.pop();  
  18.         for (int i=0; i<G[w].size(); ++i) {  
  19.             if (d[edges[G[w][i]].to] > d[w] + edges[G[w][i]].weight && d[w] != __inf) {   
  20.                 d[edges[G[w][i]].to] = d[w] + edges[G[w][i]].weight;  
  21.                 p[edges[G[w][i]].to] = G[w][i];  
  22.             }  
  23.             if (–indegree[edges[G[w][i]].to] == 0)  
  24.                 Q.push(edges[G[w][i]].to);  
  25.         }  
  26.     }  
  27. }  
  28. Floyd-Warshall  
int indegree[max_nodes];
void asp(int s)
{
    queue<int> Q;
    for (int i=0; i<num_nodes; ++i) {
        d[i] = __inf;
        indegree[i] = 0;
    }
    for (int i=0; i<num_edges; ++i)
        ++indegree[edges[i].to];
    for (int i=0; i<num_nodes; ++i)
        if (indegree[i] == 0) Q.push(i);

    d[s] = 0;
    while (!Q.empty()) {
        int w = Q.front();
        Q.pop();
        for (int i=0; i<G[w].size(); ++i) {
            if (d[edges[G[w][i]].to] > d[w] + edges[G[w][i]].weight && d[w] != __inf) { 
                d[edges[G[w][i]].to] = d[w] + edges[G[w][i]].weight;
                p[edges[G[w][i]].to] = G[w][i];
            }
            if (--indegree[edges[G[w][i]].to] == 0)
                Q.push(edges[G[w][i]].to);
        }
    }
}
Floyd-Warshall

Floyd-Warshall

与前面四种不同,Floyd-Warshall 算法是所谓的「全源最短路径」,也就是任意两点间的最短路径。它并不是对单源最短路径V次迭代的一种渐进改进,但是对非常稠密的图却可能更快,因为它的循环更加紧凑。而且,这个算法支持负的权值。

Floyd-Warshall 算法如下:

  1. int dist[max_nodes][max_nodes]; // 记录路径长  
  2. int path[max_nodes][max_nodes]; // 记录实际路径  
  3. bool Floyd_Warshall()  
  4. {  
  5.     for (int i=0; i<num_nodes; ++i)  
  6.         for (int j=0; j<num_nodes; ++j)  
  7.             path[i][j] = j;  
  8.   
  9.     for (int k=0; k<num_nodes; ++k) {  
  10.         for (int i=0; i<num_nodes; ++i) {  
  11.             for (int j=0; j<num_nodes; ++j) {  
  12.                 if (dist[i][j] > dist[i][k] + dist[k][j]  
  13.                  && dist[i][k] != __inf && dist[k][j] != __inf) {  
  14.                     dist[i][j] = dist[i][k] + dist[k][j];  
  15.                     path[i][j] = path[i][k];  
  16.                     if (i == j && dist[i][j] < 0)  
  17.                         return false;  
  18.                 }  
  19.             }  
  20.         }  
  21.     }  
  22.     return true;  
  23. }  
int dist[max_nodes][max_nodes]; // 记录路径长
int path[max_nodes][max_nodes]; // 记录实际路径
bool Floyd_Warshall()
{
    for (int i=0; i<num_nodes; ++i)
        for (int j=0; j<num_nodes; ++j)
            path[i][j] = j;

    for (int k=0; k<num_nodes; ++k) {
        for (int i=0; i<num_nodes; ++i) {
            for (int j=0; j<num_nodes; ++j) {
                if (dist[i][j] > dist[i][k] + dist[k][j]
                 && dist[i][k] != __inf && dist[k][j] != __inf) {
                    dist[i][j] = dist[i][k] + dist[k][j];
                    path[i][j] = path[i][k];
                    if (i == j && dist[i][j] < 0)
                        return false;
                }
            }
        }
    }
    return true;
}

其中 dist 数组应初始化为邻接矩阵。需要提醒的是, dist[i][i] 实际上表示「从顶点 i 绕一圈再回来的最短路径」,因此图存在负环当且仅当 dist[i][i]<0。初始化时, dist[i][i]可以初始化为0,也可以初始化为

显示实际路径

显示实际路径实际上非常简单。利用前四个算法提供的 int *p,还原实际路径的一个方法如下:

  1. void printpath(int from, int to, bool firstcall = true)  
  2. {  
  3.     if (from == to) {  
  4.         printf(”%d”, from);  
  5.         return;  
  6.     }  
  7.     if (p[to] == -1) return;  
  8.     if (firstcall) printf(“%d ->”, from);  
  9.     int v = edges[p[to]].from;  
  10.     if (v == from) {  
  11.         if (firstcall) printf(“ %d”, to);  
  12.         return;  
  13.     }  
  14.     printpath(from, v, false);  
  15.     printf(” %d ->”, v+1);  
  16.     if (firstcall) printf(“ %d”, to);  
  17. <span style=”font-size:14px;”>}</span>  
void printpath(int from, int to, bool firstcall = true)
{
    if (from == to) {
        printf("%d", from);
        return;
    }
    if (p[to] == -1) return;
    if (firstcall) printf("%d ->", from);
    int v = edges[p[to]].from;
    if (v == from) {
        if (firstcall) printf(" %d", to);
        return;
    }
    printpath(from, v, false);
    printf(" %d ->", v+1);
    if (firstcall) printf(" %d", to);
<span style="font-size:14px;">}</span>
利用 Floyd-Warshall 算法提供的 int **path,还原实际路径的一个方法如下:
  1. void showpath(int from, int to)  
  2. {  
  3.     int c = from;  
  4.     printf(”%d -> %d:(%2d)  %d”, from, to, dist[from][to], from);  
  5.     while (c != to) {  
  6.         printf(” -> %d”, path[c][to]);  
  7.         c = path[c][to];  
  8.     }  
  9.     printf(”\n”);  
  10. }  
void showpath(int from, int to)
{
    int c = from;
    printf("%d -> %d:(%2d)  %d", from, to, dist[from][to], from);
    while (c != to) {
        printf(" -> %d", path[c][to]);
        c = path[c][to];
    }
    printf("\n");
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值