自制COCO 实例分割dataset并测试效果(从采集到测试)

自制COCO 实例分割dataset并测试效果

1. 自制实例分割数据集

流程:采集->标注->测试

1.1 前期准备

  • 自制采集工具:wxpython_camera,支持普通摄像头和zed mini,图片采集分辨率自己在代码里改
  • 标注工具:labelme

labelme标注效果:
标注软件
采集程序运行效果:
运行效果

1.2 采集->标注

用labelme打开采集完成的文件夹,使用create polygon标注好保存标注的分类和文件后。在开发环境执行下面语句安装labelme库和官方项目以及pycocotool库

# 程序要安装库也要安装
pip install labelme
# 克隆官方项目
git clone https://github.com/wkentaro/labelme.git
# windows pycocotool执行这个
pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI

使用labelme官方仓库的方法生成对应coco格式的数据集
使用官方仓库examples/instance_segmentation文件夹下的labelme2coco.py对数据集进行格式转换

# 使用官方仓库examples/instance_segmentation文件夹下的labelme2coco.py对数据集进行格式转换
python labelme2coco.py <你数据集的路径> <转换后的数据集路径> --labels <labels文件路径>

下面为labels文件的格式,正常命名labels.txt就行,第一第二行保留,从_background_下开始写

__ignore__
_background_
teeth_top
teeth_bottom
uvula
tongue
pp_wall
tonsil_right
tonsil_left

1.3 测试

随便挑一张图片进行测试,使用pycocotool将一张图片的所有类型标注都输出

from pycocotools.coco import COCO
import matplotlib.pyplot as plt
import matplotlib
import cv2

matplotlib.use('Qt5Agg')
file = "../../oral_dataset/annotations.json"
pic_path = "../../oral_dataset/JPEGImages/0.jpg"
im = cv2.imread(pic_path)
plt.imshow(im); plt.axis('off')
cc = COCO(file)
# 把img id是0的图片拿来测试,就是第一张图
annIds = cc.getAnnIds(imgIds=0)
anns = cc.loadAnns(annIds)
cc.showAnns(anns)
plt.show()

1.4 测试效果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alex-Leung

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值