PHILIPS TEE(经食道)超声4D(DICOM)图像导出与解释方法

文章介绍了如何处理PHILIPSTEE超声导出的4DDICOM图像,这些图像的3D数据存储在私有标签中。通过使用CartesianDICOM,结合3DSlicer插件修复并导出.nrrd文件,然后利用pydicom库读取和重塑数据,最终进行图像显示。代码示例展示了从DICOM文件中提取和重构数据的过程。
摘要由CSDN通过智能技术生成

引言

PHILIPS TEE(经食道)超声导出的4D(DICOM)图像为一个3D模型随着时间T变化的视频。使用传统DICOM阅读器只能阅读到2D+T的视频数据。3D数据被PHILIPS存放在DICOM的私有标签中,且加载方式没有公布。解决方式是需要使用PHILIPS自家的分析软件QLAB载入DICOM文件并导出Cartesian DICOM,将3D数据导出。

解析方式

Cartesian DICOM不是包含完整的标签的dicom文件,可以使用3D Slicer插件修复,并导出.nrrd文件。具体查看参考部分。.nrrd文件数据储存格式为T + MPR重建冠状面、矢状面和水平面的size。

安装依赖

pip install pydicom

代码

path = './dcm/case2 cgq.dcm'
ds = pydicom.dcmread(path)

# 数据
bytes_data = ds[0x7fe0, 0x0010].value
# Number of Frames
frames = int(ds[0x0028, 0x0008].value)
# Rows
rows = int(ds[0x0028, 0x0010].value)
# Columns
cols = int(ds[0x0028, 0x0011].value)
# z-axis
z = int(ds[0x3001, 0x1001].value)
shape = (z * frames, rows, cols)

data = np.frombuffer(bytes_data, dtype=np.uint8)
# 与nrrd得到的ndarray shape对齐
new_shape = (frames, z, rows, cols)
data = np.reshape(data, new_shape)
data = data.swapaxes(1, 3)

print(data.shape)
# 测试,取一个切面图像出来看看
frame = data[24, :, 100, :]
cv2.imshow("1", frame)
cv2.waitKey(0)

参考

3D Slicer插件SlicerHeart

https://github.com/SlicerHeart/SlicerHeart/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alex-Leung

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值