敲完第一万行代码我发现一个秘密

       一入IT深似海,从此假期是路人,我成为程序员一年半,前一年写过的代码大概都没有这几个月多,最近接了一个项目,可谓是忙的昏天黑地,整整敲下了万余行代码,付出了很多,收获的也许更多,而且我发现了一个秘密——编程,是一个把代码越写越多再越写越少的过程。

       首先,你要明白好的代码不可能是一蹴而就的,我们接到一个项目的时候,如果前期的需求理解透彻、代码结构规划良好会减少一些工作量,但做完这些之后,我们仍然要按部就班的去实现一个个小功能,这个过程里如果有前辈已经做过某些工作,你就可以直接去理解别人的代码然后调用别人提供的接口或者方法即可,这样,会省下一万个脑细胞,然后,代码还是会越写越多,你不断摸索新的方法,不断容纳新的功能,你会发现原来的代码结构此时已经捉衿见肘变得十分混乱,不说交给别人维护,自己再过一段时间去看可能都很吃力,这时一个前辈告诉你,应该怎样去规划会更为合理,注意他说的是更,在程序员的世界里永远没有最好只有更好,写的越多就越会发现很多重复或者类似的工作,于是此时,你的重心就转移到了寻找事物的共性上,把所有共性提炼成一个一个的方法,你会惊喜的发现有时候一行代码就取代了你原来好几个屏幕的代码,那种成就感一定会让你忍不住扬起嘴角,然后突然你发现这个方法这样这样改一下又能变得更简单,于是代码会越写越少,越写越精简,它的复用性,可读性,可维护性都得到大大提升。这样,你做的项目越来越多,你的见识不断扩大,经验也不断的积累,久而久之,你就成了别人眼中的大神。
这里写图片描述

### 回答1: 当然,以下是一个基本的MLP代码,使用Python和PyTorch库。 ```python import torch import torch.nn as nn class MLP(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(MLP, self).__init__() self.fc1 = nn.Linear(input_dim, hidden_dim) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(hidden_dim, output_dim) def forward(self, x): x = self.fc1(x) x = self.relu1(x) x = self.fc2(x) return x ``` 在这里,我们定义了一个名为`MLP`的类,它继承了PyTorch的`nn.Module`类。 `__init__`方法在实例化对象时调用,用于初始化类中的属性和方法。在这里,我们定义了三个层,两个全连接层和一个ReLU激活函数。在`forward`方法中,我们定义了输入如何流经网络,即我们首先将输入传递到第一个全连接层中,然后应用ReLU激活函数,最后将输出传递到第二个全连接层中。最后,我们返回输出。 要使用这个MLP,您可以像这样实例化它: ```python input_dim = 10 hidden_dim = 20 output_dim = 2 model = MLP(input_dim, hidden_dim, output_dim) ``` 这将实例化一个名为`model`的MLP对象,输入维度为10,隐藏层维度为20,输出维度为2。接下来,您可以将数据传递到模型中,如下所示: ```python x = torch.randn(5, 10) output = model(x) print(output.shape) # 输出将是[5, 2],其中5是批次大小,2是输出维度。 ``` 在这里,我们首先生成一个大小为5x10的随机张量,并将其传递到模型中。输出是一个大小为5x2的张量,其中5是批次大小,2是输出维度。 ### 回答2: 好的,我帮你写一个简单的多层感知器(MLP)的代码。 ```python import numpy as np # 定义MLP模型的类 class MLP: def __init__(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # 初始化权重和偏置 self.W1 = np.random.randn(self.input_size, self.hidden_size) self.b1 = np.zeros((1, self.hidden_size)) self.W2 = np.random.randn(self.hidden_size, self.output_size) self.b2 = np.zeros((1, self.output_size)) def forward(self, X): # 前向传播 self.z1 = np.dot(X, self.W1) + self.b1 self.a1 = np.tanh(self.z1) self.z2 = np.dot(self.a1, self.W2) + self.b2 self.a2 = self.sigmoid(self.z2) return self.a2 def sigmoid(self, x): # sigmoid激活函数 return 1 / (1 + np.exp(-x)) def backward(self, X, y, learning_rate): # 反向传播 m = X.shape[0] delta2 = self.a2 - y dW2 = np.dot(self.a1.T, delta2) / m db2 = np.sum(delta2, axis=0) / m delta1 = np.dot(delta2, self.W2.T) * (1 - np.power(self.a1, 2)) dW1 = np.dot(X.T, delta1) / m db1 = np.sum(delta1, axis=0) / m # 更新权重和偏置 self.W2 -= learning_rate * dW2 self.b2 -= learning_rate * db2 self.W1 -= learning_rate * dW1 self.b1 -= learning_rate * db1 def train(self, X, y, epochs, learning_rate): # 训练模型 for epoch in range(epochs): output = self.forward(X) self.backward(X, y, learning_rate) loss = np.mean(np.square(output - y)) if epoch % 100 == 0: print("Epoch ", epoch, " Loss ", loss) # 创建模型实例 mlp = MLP(input_size=2, hidden_size=4, output_size=1) # 创建训练数据 X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y = np.array([[0], [1], [1], [0]]) # 训练模型 mlp.train(X, y, epochs=1000, learning_rate=0.01) # 测试模型 test_input = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) print("Test Output: ", mlp.forward(test_input)) ``` 这段代码实现了一个简单的MLP模型,用于解决XOR逻辑门问题。其中,MLP类的构造函数初始化了权重和偏置,forward函数实现了前向传播过程,backward函数实现了反向传播过程,train函数用于训练模型。 训练数据X是一个4x2的数组,每代表一个输入样本,第一列表示输入1,第二列表示输入2;训练数据y是一个4x1的数组,每代表对应输入样本的输出结果。 通过训练模型,我们可以得到输入为[[0, 0], [0, 1], [1, 0], [1, 1]]的测试数据的输出结果,用于验证模型的性能。 注意:这段代码只是一个简单的MLP模型示例,实际应用中可能需要更复杂的结构和算法。 ### 回答3: MLP代表多层感知机(Multilayer Perceptron),是一种常用于机器学习和神经网络的算法模型。下面是一个简单的MLP代码,用Python编写: ```python import numpy as np # 前向传播函数 def forward(X, W1, W2): # 第一层的加权和 H = np.dot(X, W1) # 第一层的激活函数(这里使用ReLU) A = np.maximum(0, H) # 第二层的加权和 Z = np.dot(A, W2) # 第二层的激活函数(这里使用Sigmoid) Y = 1 / (1 + np.exp(-Z)) return Y # 生成数据集 X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) Y = np.array([0, 1, 1, 0]) # 定义模型结构 input_dim = 2 hidden_dim = 4 output_dim = 1 # 初始化权重 W1 = np.random.randn(input_dim, hidden_dim) W2 = np.random.randn(hidden_dim, output_dim) # 训练模型 learning_rate = 0.1 num_epochs = 10000 for epoch in range(num_epochs): # 前向传播 Y_pred = forward(X, W1, W2) # 计算损失函数 loss = np.mean((Y - Y_pred) ** 2) # 反向传播 # 计算输出层的误差 dL_dY_pred = (Y_pred - Y) / len(Y) # 计算输出层的梯度 dY_pred_dZ = Y_pred * (1 - Y_pred) dZ_dW2 = np.transpose(A) dL_dW2 = np.dot(np.transpose(A), dL_dY_pred * dY_pred_dZ) # 计算隐藏层的误差 dZ_dA = np.transpose(W2) dL_dA = np.dot(dL_dY_pred * dY_pred_dZ, np.transpose(W2)) dA_dH = np.heaviside(H, 0) dH_dW1 = np.transpose(X) dL_dW1 = np.dot(np.transpose(X), dL_dA * dA_dH) # 更新权重 W2 -= learning_rate * dL_dW2 W1 -= learning_rate * dL_dW1 # 预测新数据 X_new = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) Y_new = forward(X_new, W1, W2) print(Y_new) ``` 以上代码实现了一个简单的MLP模型,用于解决异或逻辑门问题。输入数据X为两个二进制位,对应的输出Y为异或结果。代码中使用了两个隐藏层神经元,可以根据需要进调整。该模型通过反向传播算法进权重的更新,在经过多次迭代训练后,可以输出给定输入数据的预测结果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值