为什么估计的参数具有渐进高斯性?M-estimateor的渐进高斯性推导

M-estimators

在这里我们研究一种叫M-estimators的渐进高斯性。具体来说,如果参数估计可以用一个最小化或者最大化目标表示:

θ o = arg ⁡ min ⁡ θ ∈ Θ E [ q ( w , θ ) ] \theta _{o} =\arg\min_{\theta \in \Theta }\mathbb{E}[ q(w,\theta )] θo=argθΘminE[q(w,θ)]

比如最大似然估计就是最大化似然函数的参数,那么把样本代进去,我们就可以得到m-estimator(maximum-likelihood-like estimator Huber (1967)):

θ ^ = arg ⁡ min ⁡ θ N − 1 ∑ i = 1 N q ( w i , θ ) \hat{\theta } =\arg\min_{\theta } N^{-1}\sum _{i=1}^{N} q(w_{i} ,\theta ) θ^=argθminN1i=1Nq(wi,θ)

它表示就是从样本中估计的参数。
我们也可以用其极值条件来表示这个估计量,即找到其导数为0的极值点就是我们的 θ ^ \displaystyle \hat{\theta } θ^

N − 1 ∑ i = 1 N ∇ θ q ( w i , θ ^ ) = 0 N^{-1}\sum _{i=1}^{N} \nabla _{\theta } q(w_{i} ,\hat{\theta } )=0 N1i=1Nθq(wi,θ^)=0

这个估计方式也被称为generalized method of moments(GMM),大部分情况下GMM和MLE是等价的,GMM的适用范围会更广一点,因为那些无法用MLE的模型可以用GMM来求,比如有些数据的分布不知道,或者写不出具体的形式,这时候MLE就没法用了。

Consistency and normality of M-estimators

那么这个估计的参数 θ ^ \displaystyle \hat{\theta } θ^有些什么性质呢?对于估计量的性质,我们一般关心这三个问题:可识别性(identifiability),一致性(consistency),以及渐进高斯性(asymptotic normality)。

可识别性是基本要求,也就是这个极值点是唯一的,不可以存在另外的参数但他们的大小相同,这个性质一般是具体问题具体分析,这里先假设成立。

Consistency

对于一致性,其实就是 θ ^ → p θ 0 \displaystyle \hat{\theta }\xrightarrow{p} \theta _{0} θ^p θ0是否依概率收敛到到真实的 θ 0 \displaystyle \theta _{0} θ0上去。

在这里插入图片描述

为了证明一致性,如上图,我们可以以他们的目标函数作为桥梁,通过证明 N − 1 ∑ i = 1 N q ( w i , θ ) \displaystyle N^{-1}\sum _{i=1}^{N} q(w_{i} ,\theta ) N1i=1Nq(wi,θ)uniform convergence收敛到 E [ q ( w , θ ) ] \displaystyle E[ q( w,\theta )] E[q(w,θ)](其实就是大数定理),并且基于 θ 0 \displaystyle \theta _{0} θ0的可识别性,以及连续有界等等性质,证明出 θ ^ → p θ 0 \displaystyle \hat{\theta }\xrightarrow{p} \theta _{0} θ^p θ0:

在这里插入图片描述

Normality

最后是渐进高斯性,所谓渐进高斯就是

在这里插入图片描述

这个定理告诉我们,这个估计的参数是服从正态分布的,而且他的方差取决于q的一阶和二阶导数。这东西是怎么来的呢,其实就是通过泰勒展开建立了估计参数与目标函数导数的桥梁。具体推导如下,这里都假设可识别性以及一致性成立。

首先定义符号, s i ( θ ) \displaystyle s_{i} (\theta ) si(θ)是一个 1 × P 1\times P 1×P 向量

s i ( θ ) ≡ ∇ θ q ( w i , θ ) = ( ∂ q ( w i , θ ) ∂ θ 1 , . . . , ∂ q ( w i , θ ) ∂ θ P ) T \begin{array}{ r c l } s_{i} (\theta ) & \equiv & \nabla _{\theta } q(w_{i} ,\theta )\\ & = & \left(\frac{\partial q(w_{i} ,\theta )}{\partial \theta _{1}} ,...,\frac{\partial q(w_{i} ,\theta )}{\partial \theta _{P}}\right)^{T} \end{array} si(θ)=θq(wi,θ)(θ1q(wi,θ),...,θPq(wi,θ))T

H i ( θ ) \displaystyle H_{i} (\theta ) Hi(θ)则是 P × P P\times P P×P矩阵

H i ( θ ) ≡ ∇ θ θ 2 q ( w i , θ ) = ∂ 2 q ( w i , θ ) ∂ θ ∂ θ ′ . H_{i} (\theta )\equiv \nabla _{\theta \theta }^{2} q(w_{i} ,\theta )=\frac{\partial ^{2} q(w_{i} ,\theta )}{\partial \theta \partial \theta ^{\prime }} . Hi(θ)θθ2q(wi,θ)=θθ2q(wi,θ).

接下来我们希望对 s i ( θ ) \displaystyle s_{i}( \theta ) si(θ)作一阶泰勒展开。回顾一下泰勒展开,一个连续函数 f ( x ) \displaystyle f( x) f(x) x 0 \displaystyle x_{0} x0处的展开为:

f ( x ) = f ( x 0 ) + f ′ ( x + ) ( x − x 0 ) f(x)=f(x_{0} )+f'(x^{+} )(x-x_{0} ) f(x)=f(x0)+f(x+)(xx0)

其中   x + \displaystyle \ x^{+}  x+ x 0 \displaystyle x_{0} x0 x \displaystyle x x之间的数,这个也称为中值定理。但如果f的输出是个向量,那么这个展开就是向量形式的泰勒展开:

f ( x ) = f ( x 0 ) + ∂ f ( x ) ∂ x ∣ x = x + ( x − x 0 ) \mathbf{f} (\mathbf{x} )=\mathbf{f} (\mathbf{x}_{0} )+\frac{\partial \mathbf{f} (\mathbf{x} )}{\partial \mathbf{x}}\Bigl|_{\mathbf{x} =\mathbf{x}^{+}} (\mathbf{x} -\mathbf{x}_{0} ) f(x)=f(x0)+xf(x) x=x+(xx0)

这里 ∂ f ( x ) ∂ x \displaystyle \frac{\partial \mathbf{f} (\mathbf{x} )}{\partial \mathbf{x}} xf(x)是一个矩阵,对于该矩阵的每一行,其对应的 x + \displaystyle \mathbf{x}^{+} x+都是不同的。

接下来,我们建立 θ \displaystyle \theta θ s ( θ ) \displaystyle s( \theta ) s(θ)的联系,具体的,把这个泰勒展开用到 s i ( θ ) \displaystyle s_{i} (\theta ) si(θ)上,

∑ i = 1 N s i ( θ ^ ) = ∑ i = 1 N s i ( θ 0 ) + ∑ i = 1 N ∂ s i ( θ ) ∂ θ ∣ θ + ( θ ^ − θ 0 ) \sum _{i=1}^{N} s_{i} (\hat{\theta } )=\sum _{i=1}^{N} s_{i} (\theta _{0} )+\sum _{i=1}^{N}\frac{\partial s_{i} (\theta )}{\partial \theta }\Bigl|_{\theta ^{+}} (\hat{\theta } -\theta _{0} ) i=1Nsi(θ^)=i=1Nsi(θ0)+i=1Nθsi(θ) θ+(θ^θ0)

现在,我们用 S ( θ ) = 1 N ∑ i = 1 N s i ( θ ) = 1 N ∑ i = 1 N ∇ θ q ( w i , θ ) \displaystyle S( \theta ) =\frac{1}{N}\sum _{i=1}^{N} s_{i} (\theta )=\frac{1}{N}\sum _{i=1}^{N} \nabla _{\theta } q(w_{i} ,\theta ) S(θ)=N1i=1Nsi(θ)=N1i=1Nθq(wi,θ) S ′ ( θ ) = 1 N ∑ i = 1 N ∂ s i ( θ ) ∂ θ ∣ θ + = 1 N ∑ i = 1 N ∇ θ θ 2 q ( w i , θ ) \displaystyle S'( \theta ) =\frac{1}{N}\sum _{i=1}^{N}\frac{\partial s_{i} (\theta )}{\partial \theta }\Bigl|_{\theta ^{+}} =\frac{1}{N}\sum _{i=1}^{N} \nabla _{\theta \theta }^{2} q(w_{i} ,\theta ) S(θ)=N1i=1Nθsi(θ) θ+=N1i=1Nθθ2q(wi,θ),于是

S ( θ ^ ) = S ( θ 0 ) + S ′ ( θ + ) ( θ ^ − θ 0 ) S(\hat{\theta }) =S( \theta _{0}) +S'\left( \theta ^{+}\right) (\hat{\theta } -\theta _{0} ) S(θ^)=S(θ0)+S(θ+)(θ^θ0)

首先,根据 θ ^ \displaystyle \hat{\theta } θ^的定义,他是通过极值点求得的,因此 S ( θ ^ ) = 0 \displaystyle S(\hat{\theta }) =0 S(θ^)=0,于是

0 = S ( θ 0 ) + S ′ ( θ + ) ( θ ^ − θ 0 ) θ ^ − θ 0 = − S ′ ( θ + ) − 1 S ( θ 0 ) \begin{aligned} 0 & =S( \theta _{0}) +S'\left( \theta ^{+}\right) (\hat{\theta } -\theta _{0} )\\ \hat{\theta } -\theta _{0} & =-S'\left( \theta ^{+}\right)^{-1} S( \theta _{0}) \end{aligned} 0θ^θ0=S(θ0)+S(θ+)(θ^θ0)=S(θ+)1S(θ0)

接下来,希望将 θ + \displaystyle \theta ^{+} θ+变成 θ 0 \displaystyle \theta _{0} θ0。基于参数的一致性 θ ^ → p θ 0 \displaystyle \hat{\theta }\xrightarrow{p} \theta _{0} θ^p θ0,并且进一步假设 S ′ \displaystyle S' S这个函数是平滑的,那么就会有

θ ^ − θ 0 = − S ′ ( θ 0 ) − 1 S ( θ 0 ) + o p ( 1 ) N ( θ ^ − θ 0 ) = − S ′ ( θ 0 ) − 1 N S ( θ 0 ) ⏟ → N ( 0 , B 0 ) + o p ( 1 ) \begin{aligned} \hat{\theta } -\theta _{0} & =-S'( \theta _{0})^{-1} S( \theta _{0}) +o_{p}( 1)\\ \sqrt{N}(\hat{\theta } -\theta _{0}) & =-S'( \theta _{0})^{-1}\underbrace{\sqrt{N} S( \theta _{0})}_{\rightarrow \mathcal{N}( 0,B_{0})} +o_{p}( 1) \end{aligned} θ^θ0N (θ^θ0)=S(θ0)1S(θ0)+op(1)=S(θ0)1N(0,B0) N S(θ0)+op(1)

这里 o p ( 1 ) \displaystyle o_{p}( 1) op(1)表示这条等式在 N → ∞ \displaystyle N\rightarrow \infty N的时候成立。接下来,因为 θ 0 \displaystyle \theta _{0} θ0是个常数,而 S ( θ 0 ) = 1 N ∑ i = 1 N ∇ θ q ( w i , θ 0 ) \displaystyle S( \theta _{0}) =\frac{1}{N}\sum _{i=1}^{N} \nabla _{\theta } q(w_{i} ,\theta _{0} ) S(θ0)=N1i=1Nθq(wi,θ0),是一个样本的均值,所以根据中心极限定理,这个东西会趋于正态分布,并且因为 E [ S ( θ 0 ) ] = 0 \displaystyle E[ S( \theta _{0})] =0 E[S(θ0)]=0(因为 θ 0 \displaystyle \theta _{0} θ0 E [ q ( w , θ ) ] \displaystyle \mathbb{E}[ q(w,\theta )] E[q(w,θ)]的极值点),所以其正态分布的均值为0,而其方差则是 V a r ( ∇ θ q ( w i , θ 0 ) ) = V a r ( s i ( θ 0 ) ) \displaystyle Var( \nabla _{\theta } q(w_{i} ,\theta _{0} )) =Var( s_{i} (\theta _{0} )) Var(θq(wi,θ0))=Var(si(θ0)),记为 B 0 \displaystyle B_{0} B0,并且记 A 0 : = S ′ ( θ 0 ) \displaystyle A_{0} :=S'( \theta _{0}) A0:=S(θ0)

N ( θ ^ − θ 0 ) → d N ( 0 , A 0 − 1 B 0 A 0 − 1 ) \sqrt{N}(\hat{\theta } -\theta _{0})\xrightarrow{d}\mathcal{N}\left( 0,A_{0}^{-1} B_{0} A_{0}^{-1}\right) N (θ^θ0)d N(0,A01B0A01)

这里之所以两个 A 0 \displaystyle A_{0} A0是因为 − a ∗ N ( 0 , 1 ) ∼ N ( 0 , a 2 ) \displaystyle -a*N( 0,1) \sim N\left( 0,a^{2}\right) aN(0,1)N(0,a2),是矩阵的平方的写法。最后这就是我们的定理

在这里插入图片描述

我们发现,这个参数估计的方差是取决于 V a r ( ∇ θ q ( w i , θ 0 ) ) \displaystyle Var( \nabla _{\theta } q(w_{i} ,\theta _{0} )) Var(θq(wi,θ0))以及 E [ ∇ θ θ 2 q ( w i , θ ) ] \displaystyle E\left[ \nabla _{\theta \theta }^{2} q(w_{i} ,\theta )\right] E[θθ2q(wi,θ)].

这个证明核心的地方是那个泰勒展开,其导数 S ( θ 0 ) \displaystyle S( \theta _{0}) S(θ0)是样本均值求和,根据中心极限定理是渐进高斯的,又因为参数 θ ^ − θ 0 \displaystyle \hat{\theta } -\theta _{0} θ^θ0可以用 S ( θ 0 ) \displaystyle S( \theta _{0}) S(θ0)表示,从而可以写出渐进高斯的表达式。

例子

考虑一个简单的线性模型

y = a x + ϵ ,   y=ax+\epsilon ,\ y=ax+ϵ, 

其中 x ∼ N ( 0 , σ x 2 ) , ϵ ∼ N ( 0 , σ ϵ 2 ) \displaystyle x\sim \mathcal{N}\left( 0,\sigma _{x}^{2}\right) ,\epsilon \sim \mathcal{N}\left( 0,\sigma _{\epsilon }^{2}\right) xN(0,σx2),ϵN(0,σϵ2)。于是,

a ^ = arg ⁡ max ⁡ 1 N ∑ i = 1 N log ⁡ p ( x i , y i ; a ) = arg ⁡ min ⁡ 1 N ∑ i = 1 N ( y i − a x i ) 2 \begin{aligned} \hat{a} & =\arg\max\frac{1}{N}\sum _{i=1}^{N}\log p( x_{i} ,y_{i} ;a)\\ & =\arg\min\frac{1}{N}\sum _{i=1}^{N}( y_{i} -ax_{i})^{2} \end{aligned} a^=argmaxN1i=1Nlogp(xi,yi;a)=argminN1i=1N(yiaxi)2

因此, q ( x i , y i , a ) = ( y i − a x i ) 2 \displaystyle q( x_{i} ,y_{i} ,a) =( y_{i} -ax_{i})^{2} q(xi,yi,a)=(yiaxi)2,于是

B 0 = V a r ( ∇ a q ( x i , y i , a ) ) = V a r ( − 2 ( y i − a x i ) x i ) = V a r ( − 2 ϵ i x i ) = E [ 4 ϵ i 2 x i 2 ] − 4 E [ ϵ i x i ] 2 = 4 σ x 2 σ ϵ 2 A 0 = E [ ∇ a a 2 q ( x i , y i , a ) ] = E [ 2 x i 2 ] = 2 σ x 2 B_{0} =Var( \nabla _{a} q( x_{i} ,y_{i} ,a)) =Var( -2( y_{i} -ax_{i}) x_{i}) =Var( -2\epsilon _{i} x_{i}) =E\left[ 4\epsilon _{i}^{2} x_{i}^{2}\right] -4E[ \epsilon _{i} x_{i}]^{2} =4\sigma _{x}^{2} \sigma _{\epsilon }^{2}\\ A_{0} =E\left[ \nabla _{aa}^{2} q( x_{i} ,y_{i} ,a)\right] =E\left[ 2x_{i}^{2}\right] =2\sigma _{x}^{2} B0=Var(aq(xi,yi,a))=Var(2(yiaxi)xi)=Var(2ϵixi)=E[4ϵi2xi2]4E[ϵixi]2=4σx2σϵ2A0=E[aa2q(xi,yi,a)]=E[2xi2]=2σx2

于是,我们有

N ( a ^ − a ) → d N ( 0 , σ ϵ 2 σ x 2 ) \sqrt{N}(\hat{a} -a)\xrightarrow{d}\mathcal{N}\left( 0,\frac{\sigma _{\epsilon }^{2}}{\sigma _{x}^{2}}\right) N (a^a)d N(0,σx2σϵ2)

参考资料

Consistency and normality of M-estimators
Linearity of the Integrator of Riemann-Stieltjes Integrals

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 牛顿法、高斯牛顿法和L-M法都是数值优化方法,用于求解非线问题的最优解。它们的推导如下: 1. 牛顿法(Newton's Method): 牛顿法利用一阶导数和二阶导数信息来逼近目标函数的局部极小值点。 首先,我们假设目标函数是二阶可微的。对于目标函数f(x),牛顿法构造了一个局部线近似函数: g(x) = f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)}) + (1/2) (x - x^{(k)})^T H(x^{(k)})(x - x^{(k)}) 其中,x^{(k)}为第k次迭代的近似解,\nabla f(x^{(k)})是目标函数f(x)在x^{(k)}处的梯度,H(x^{(k)})是目标函数f(x)在x^{(k)}处的Hessian矩阵。 然后,将g(x)最小化,求解出x的更新值x^{(k+1)}: x^{(k+1)} = x^{(k)} - [H(x^{(k)})]^{-1} \nabla f(x^{(k)}) 通过迭代计算,最终得到目标函数的最优解。 2. 高斯牛顿法(Gauss-Newton Method): 高斯牛顿法用于求解非线最小二乘问题,即最小化目标函数f(x) = (1/2) \|F(x)\|^2。 假设F(x)为目标函数对应的残差向量,其雅可比矩阵为J(x),即F(x) = J(x) Δx。高斯牛顿法在每次迭代中近似将目标函数F(x)用线形式进行近似: F(x) ≈ F(x^{(k)}) + J(x^{(k)}) Δx 然后,通过最小化近似的目标函数,求解出Δx的更新值: Δx = -[J(x^{(k)})^T J(x^{(k)})]^{-1} J(x^{(k)})^T F(x^{(k)}) 通过迭代计算,得到更新后的x值。该方法主要应用于非线最小二乘问题的求解。 3. L-M法(Levenberg-Marquardt Method): L-M法综合了牛顿法和高斯牛顿法的优点,用于求解非线最小二乘问题。 定义目标函数F(x)和雅可比矩阵J(x),则非线最小二乘问题可以表示为最小化目标函数E(x) = (1/2) \|F(x)\|^2。 L-M法的核心思想在于考虑残差和自由度之间的权衡,引入一个正则化因子λ,通过调整λ的值来平衡牛顿法和高斯牛顿法。 迭代计算的更新值为: Δx = -[J(x^{(k)})^T J(x^{(k)}) + λ I]^{-1} J(x^{(k)})^T F(x^{(k)}) 根据更新值计算x的更新值,并不断调整λ的值,直到满足停止迭代的条件,得到最优解。 这三个方法都是经典的数值优化算法,用于求解非线问题的最优解。根据不同的问题特,选择合适的方法可以提高优化效率和准确。 ### 回答2: 牛顿法、高斯牛顿法和L-M方法是常用的优化算法,它们可以求解非线最小二乘问题。 首先,我们介绍牛顿法。给定一个非线函数F(x),我们要求解使F(x)=0的x值。牛顿法的思想是利用一阶泰勒展开来逼近非线函数,从而找到使F(x)=0的解x。具体推导如下: 首先,根据泰勒展开,我们有: F(x+Δx) ≈ F(x) + J(x)Δx 其中,Δx是x的增量,J(x)是F(x)的雅可比矩阵。 将F(x+Δx)置为0,我们可以得到下面的方程: F(x) + J(x)Δx = 0 进一步化简,我们可以得到迭代更新公式: x_new = x - [J(x)]⁻¹F(x) 其中,x_new是更新后的x值,[J(x)]⁻¹是雅可比矩阵的逆矩阵。 接下来,我们介绍高斯牛顿法。在非线最小二乘问题中,我们希望找到使残差平方和最小化的参数高斯牛顿法是一种迭代方法,通过不断局部线化来优化参数。具体推导如下: 假设有一个非线函数y=f(x,θ),其中θ是待求的参数,给定一组数据点(xi,yi),我们希望通过改变参数θ来最小化误差,即最小化残差函数R(θ)的平方和。 首先,我们通过泰勒展开将非线函数f(x,θ)近似为线函数h(x,θ): h(x, θ) ≈ f(x, θ) + J(x, θ)δθ 其中,δθ是θ的增量,J(x, θ)是f(x, θ)关于θ的雅可比矩阵。 根据最小二乘法的思想,我们有: R(θ) = Σ(f(xi,θ) - yi)² ≈ Σ(h(xi,θ) - yi)² 通过最小化残差平方和,我们可以得到增量的更新公式: δθ = -(J(x, θ)ᵀJ(x, θ))⁻¹J(x, θ)ᵀR(x, θ) 最后,我们介绍L-M方法(Levenberg-Marquardt Algorithm)。L-M方法是一种将牛顿法和梯度下降法相结合的方法,可以更好地处理非线最小二乘问题。 L-M方法是在高斯牛顿法的基础上,引入一个可调节的参数λ,用于平衡牛顿法和梯度下降法。具体推导如下: 首先,我们有牛顿法的迭代更新公式: δθ = -(J(x, θ)ᵀJ(x, θ))⁻¹J(x, θ)ᵀR(x, θ) 然后,我们引入一个参数λ,并定义增量的修正形式: δθ_new = (J(x, θ)ᵀJ(x, θ) + λI)⁻¹J(x, θ)ᵀR(x, θ) 根据修正增量的大小,我们可以判断是否接近最优解。如果修正增量趋于0,说明非线最小二乘问题已经接近最优解;如果修正增量过大,说明最优解可能在其他方向上。通过不断调整λ,可以实现更好地收敛和稳定。 综上所述,牛顿法、高斯牛顿法和L-M方法都是求解非线最小二乘问题的优化算法,在实际应用中都有其独特的优势和适用场景。 ### 回答3: 牛顿法、高斯-牛顿法和L-M法都是数值优化中常用的方法,用于求解非线最小二乘问题。下面将分别对这三种方法进行详细推导。 1. 牛顿法: 设需要求解的方程为 F(x) = 0,希望找到使得 F(x) 接近零的解 x。牛顿法的思想是用一个线逼近函数来代替非线方程 F(x),通过迭代不断降低逼近函数与原方程的差异。 具体推导如下: (1)选择一个初始解 x0,并计算方程 F(x) 在 x0 处的一阶导数 J 和二阶导数 H。 (2)根据牛顿迭代公式进行迭代:x(k+1) = x(k) - H⁻¹ * J,其中 k 表示迭代次数。 (3)不断迭代直到满足终止条件。 2. 高斯-牛顿法(非线最小二乘法): 高斯-牛顿法用于解决最小二乘问题,即将观测数据拟合到一个非线模型中,使得模型预测值与实际观测值之间的误差最小。 具体推导如下: (1)设非线模型为 y = f(x;θ),其中 θ 表示需要优化的参数。 (2)根据最小二乘法的思想,将观测数据与模型预测值之间的差异平方和最小化,得到一个优化目标函数 E(θ)。 (3)使用牛顿法进行迭代优化:θ(k+1) = θ(k) - (JᵀJ)⁻¹Jᵀe,其中 J 是 E(θ) 对θ的一阶导数,e 是观测数据与模型预测值之间的误差向量。 (4)不断迭代直到满足终止条件。 3. L-M法(Levenberg-Marquardt法): L-M法是用于求解非线最小二乘问题的一个改进的方法,它结合了牛顿法和梯度下降法的优点。 具体推导如下: (1)设非线模型为 y = f(x;θ)。 (2)根据最小二乘法的思想,将观测数据与模型预测值之间的差异平方和最小化,得到一个优化目标函数 E(θ)。 (3)L-M法在牛顿法迭代公式中引入一个参数 λ,得到新的迭代公式:θ(k+1) = θ(k) - (JᵀJ + λI)⁻¹Jᵀe,其中 J 是 E(θ) 对θ的一阶导数,e 是观测数据与模型预测值之间的误差向量,I 是单位矩阵。 (4)如果λ较大时,L-M法类似于梯度下降法;如果λ较小时,L-M法类似于牛顿法。 (5)不断调整 λ 的值,通过迭代直到满足终止条件。 总之,牛顿法、高斯-牛顿法和L-M法都是常用的非线最小二乘求解方法,它们在数值优化和数据拟合中具有重要的应用价值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值