什么是RKHS?

什么是RKHS?

RKHS全称叫再生希尔伯特空间(Reproducing kernel Hilbert space). 首先希尔伯特空间 H \displaystyle \mathcal{H} H是一个完备的内积空间(完备意味着里面的数列取极限是收敛的),在这个空间里有很多有用的性质,比如说这个空间的内积可以用来构造范数 ∥ x ∥ = ( x , x ) \displaystyle \| x\| =\sqrt{( x,x)} x=(x,x) ,所以该空间也是赋范空间。

在希尔伯特空间的基础上加上一个叫再生性(reproducing)的性质,那么这个空间就是再生希尔伯特空间。为什么要加个再生性上去呢?因为拥有再生性质的希尔伯特空间,可以证明他的再生核是唯一的,也就是说,只要找到一个再生性的核函数,那么一定对应着一个唯一的希尔伯特空间。如果没有再生性,那么这个核函数可能对应着多个不同的空间。

RKHS空间有3个重要的部分,第一个是Evaluation functional(定义1),他是一个Dirac函数,如果这个函数是连续的那么希尔伯特空间就是再生希尔伯特空间,第二个重要的元素就是再生核,定义3给出了再生核要满足的条件,可以证明,如果一个希尔伯特空间是RKHS当且仅当再生核存在(定理1)。最后就是他的正定性,根据这些性质我们就能自己去构造想要的核函数,而Moore-Aronszajn定理告诉了我们构造的方法。

Definition 1 (Evaluation functional) 设 H \displaystyle \mathcal{H} H为函数 f : X → R \displaystyle f:X\rightarrow R f:XR的希尔伯特空间 ,该函数定义在X上,对于固定的 x ∈ X \displaystyle x\in \mathcal{X} xX, 映射 δ x : H → R , δ x : f → f ( x ) \displaystyle \delta _{x} :H\rightarrow R,\delta _{x} :f\rightarrow f( x) δx:HR,δx:ff(x)称为点x的(Dirac) evaluation functional

δ x \displaystyle \delta _{x} δx作用可以理解为将一个H中的函数的值固定为f(x): δ x ( f ) = f ( x ) \displaystyle \delta _{x}( f) =f( x) δx(f)=f(x)

Definition 2 (Reproducing kernel Hilbert space, RKHS), 设 H \displaystyle \mathcal{H} H为函数 f : X → R \displaystyle f:X\rightarrow R f:XR的希尔伯特空间 ,该函数定义在X上,如果 δ x \displaystyle \delta _{x} δx是连续的则H为RKHS

Definition 3 reproducing kernel,让 H \displaystyle \mathcal{H} H为定义在 X \displaystyle \mathcal{X} X上的实数R函数的希尔伯特空间。若函数 k : X × X → R \displaystyle k:\mathcal{X} \times \mathcal{X}\rightarrow \mathcal{R} k:X×XR满足下面两个性质则称为 H \displaystyle \mathcal{H} H的再生核
1. ∀ x ∈ X , k ( . , x ) ∈ H \displaystyle \forall x\in \mathcal{X} ,k( .,x) \in \mathcal{H} xX,k(.,x)H (可以理解为是映射 k ( . , x ) : X → H \displaystyle k( .,x) :\mathcal{X}\rightarrow \mathcal{H} k(.,x):XH)
2. ∀ x ∈ X , ∀ f ∈ H , ⟨ f , k ( . , x ) ⟩ H = f ( x ) \displaystyle \forall x\in \mathcal{X} ,\forall f\in \mathcal{H} ,\langle f,k( .,x) \rangle _{\mathcal{H}} =f( x) xX,fH,f,k(.,x)H=f(x)

从而有
k ( x , y ) = ⟨ k ( . , x ) , k ( . , y ) ⟩ H k( x,y) =\langle k( .,x) ,k( .,y) \rangle _{\mathcal{H}} k(x,y)=k(.,x),k(.,y)H

上面的定义,k(.,x)是X→R的函数 (这里每个x都对应一个不同k的函数), 第二点是再生性质,即两个泛函的内积恰好等于f(x),可以证明,对于空间H而言,满足这些条件的k一定是唯一的,也就是说,我们只要选择一个k,就一定对应着一个再生希尔伯特空间。

Proposition 1 如果存在在再生核k,则它是唯一的
证明:假设存在两个再生核 k 1 , k 2 \displaystyle k_{1} ,k_{2} k1,k2 ,根据定义

⟨ f , k 1 ( . , x ) − k 2 ( . , x ) ⟩ H = f ( x ) − f ( x ) = 0 , ∀ x ∈ X , ∀ f ∈ H \langle f,k_{1}( .,x) -k_{2}( .,x) \rangle _{\mathcal{H}} =f( x) -f( x) =0,\forall x\in \mathcal{X} ,\forall f\in \mathcal{H} f,k1(.,x)k2(.,x)H=f(x)f(x)=0,xX,fH

如果我们设 f = k 1 ( . , x ) − k 2 ( . , x ) \displaystyle f=k_{1}( .,x) -k_{2}( .,x) f=k1(.,x)k2(.,x),于是 ∥ k 1 ( . , x ) − k 2 ( . , x ) ∥ 2 = 0 , ∀ x ∈ X \displaystyle \| k_{1}( .,x) -k_{2}( .,x) \| ^{2} =0,\forall x\in \mathcal{X} k1(.,x)k2(.,x)2=0,xX,因此 k 1 = k 2 \displaystyle k_{1} =k_{2} k1=k2

接来下我们证明再生希尔伯特空间当且仅当再生核存在。

Theorem 1 H \displaystyle \mathcal{H} H为定义在X上的函数 f : X → R \displaystyle f:X\rightarrow R f:XR的再生希尔伯特空间 (如果 δ x \delta _{x} δx是连续的则H为RKHS)当且仅当存在再生核。

证明: ⇐ \displaystyle \Leftarrow 若存在再生核,根据定义 ⟨ f , k ( . , x ) ⟩ H = f ( x ) \displaystyle \langle f,k( .,x) \rangle _{\mathcal{H}} =f( x) f,k(.,x)H=f(x),于是

∣ δ x f ∣ = ∣ f ( x ) ∣ = ∣ ⟨ f , k ( . , x ) ⟩ H ∣ ⩽ ∥ f ∥ H ⋅ ∥ k ( . , x ) ∥ H = ∥ f ∥ H ⋅ ⟨ k ( . , x ) , k ( . , x ) ⟩ H 1 / 2 = ∥ f ∥ H ⋅ k ( x , x ) 1 / 2 \begin{aligned} |\delta _{x} f| & =|f( x) |\\ & =|\langle f,k( .,x) \rangle _{\mathcal{H}} |\\ & \leqslant \| f\| _{\mathcal{H}} \cdot \| k( .,x) \| _{\mathcal{H}}\\ & =\| f\| _{\mathcal{H}} \cdot \langle k( .,x) ,k( .,x) \rangle ^{1/2}_{\mathcal{H}}\\ & =\| f\| _{\mathcal{H}} \cdot k( x,x)^{1/2} \end{aligned} δxf=f(x)=f,k(.,x)HfHk(.,x)H=fHk(.,x),k(.,x)H1/2=fHk(x,x)1/2

其中不等式来自于Cauchy-Schwarz不等式( ∣ ( x , y ) ∣ 2 ⩽ ( x , x ) ⋅ ( y , y ) ⇔ ∣ ( x , y ) ∣ ⩽ ∥ x ∥ ⋅ ∥ y ∥ \displaystyle |( x,y) |^{2} \leqslant ( x,x) \cdot ( y,y) \Leftrightarrow |( x,y) |\leqslant \| x\| \cdot \| y\| (x,y)2(x,x)(y,y)(x,y)xy),于是函数 δ x \displaystyle \delta _{x} δx有界,因此是连续的泛函。
⟹ \displaystyle \Longrightarrow 这里需要Riesz representation theorem,该定理说明了,任意的映射都存在一个对应的内积: f ( x ) = ⟨ x , y δ x ⟩ H \displaystyle f( x) =\langle x,y_{\delta _{x}} \rangle _{\mathcal{H}} f(x)=x,yδxH,于是,一定存在 f δ x ∈ H \displaystyle f_{\delta _{x}} \in \mathcal{H} fδxH使得

δ x ( f ) = ⟨ f , f δ x ⟩ H , ∀ f ∈ H \delta _{x}( f) =\langle f,f_{\delta _{x}} \rangle _{\mathcal{H}} ,\forall f\in \mathcal{H} δx(f)=f,fδxH,fH

又因为根据 δ x \displaystyle \delta _{x} δx的定义 δ x ( f ) = f ( x ) \displaystyle \delta _{x}( f) =f( x) δx(f)=f(x),于是只要令 k ( . , x ) = f δ x \displaystyle k( .,x) =f_{\delta _{x}} k(.,x)=fδx就能构造出k使其满足再生核的性质,即 ⟨ f , k ( . , x ) ⟩ H = δ x ( f ) = f ( x ) \displaystyle \langle f,k( .,x) \rangle _{\mathcal{H}} =\delta _{x}( f) =f( x) f,k(.,x)H=δx(f)=f(x)
证毕。

Theorem 2 P113, Riesz representation theorem 设X是Hilbert空间,f是X上的线性连续泛函,则存在唯一 y ∈ X \displaystyle y\in X yX使得对任意 x ∈ X \displaystyle x\in X xX f ( x ) = ( x , y ) , ∥ f ∥ = ∥ y ∥ \displaystyle f( x) =( x,y) ,\| f\| =\| y\| f(x)=(x,y),f=y

证明:若f为零泛函时取y=0即可,因此只需证明 y ≠ 0 \displaystyle y\neq 0 y̸=0时成立。

存在性:若f是X熵的非零线性连续泛函 ,则 M = { x ∣ f ( x ) = 0 } \displaystyle M=\{x|f( x) =0\} M={xf(x)=0}是X的闭真子空间,故存在 u ∈ X \ M \displaystyle u\in X\backslash M uX\M 由投影定理可知存在 u 0 ∈ M \displaystyle u_{0} \in M u0M以及M正交的 z ∈ M ⊥ \displaystyle z\in M^{\bot } zM,,使得 z = u − u 0 \displaystyle z=u-u_{0} z=uu0 因而 z ∈ M ⊥ \displaystyle z\in M^{\bot } zM z ≠ 0 \displaystyle z\neq 0 z̸=0.
由于 M ∩ M ⊥ = { 0 } \displaystyle M\cap M^{\bot } =\{0\} MM={0},因此 f ( z ) ≠ 0 \displaystyle f( z) \neq 0 f(z)̸=0. 对于任意的 x ∈ X \displaystyle x\in X xX显然 f ( x − f ( x ) f ( z ) z ) = 0 \displaystyle f\left( x-\frac{f( x)}{f( z)} z\right) =0 f(xf(z)f(x)z)=0因此, x − f ( x ) f ( z ) z ∈ M \displaystyle x-\frac{f( x)}{f( z)} z\in M xf(z)f(x)zM
于是

⟨ x − f ( x ) f ( z ) z , z ⟩ = 0 ⟹ ⟨ x , z ⟩ − f ( x ) f ( z ) ⟨ z , z ⟩ = 0 \langle x-\frac{f( x)}{f( z)} z,z\rangle =0\\ \Longrightarrow \langle x,z\rangle -\frac{f( x)}{f( z)} \langle z,z\rangle =0 xf(z)f(x)z,z=0x,zf(z)f(x)z,z=0

因此

f ( x ) = f ( z ) ∥ z ∥ 2 ⟨ x , z ⟩ = ⟨ x , f ( z ) ‾ ∥ z ∥ 2 z ⟩ f( x) =\frac{f( z)}{\| z\| ^{2}} \langle x,z\rangle =\langle x,\frac{\overline{f( z)}}{\| z\| ^{2}} z\rangle f(x)=z2f(z)x,z=x,z2f(z)z

y = f ( z ) ‾ ∥ z ∥ 2 z \displaystyle y=\frac{\overline{f( z)}}{\| z\| ^{2}} z y=z2f(z)z,则对任意的 x ∈ X \displaystyle x\in X xX都有

f ( x ) = ⟨ x , y ⟩ f( x) =\langle x,y\rangle f(x)=x,y

唯一性:假设存在 y ′ ∈ X \displaystyle y'\in X yX使得 f ( x ) = ⟨ x , y ′ ⟩ , ∀ x ∈ X \displaystyle f( x) =\langle x,y'\rangle ,\forall x\in X f(x)=x,y,xX,同时又因为 y − y ′ ∈ X \displaystyle y-y'\in X yyX所以

f ( y − y ′ ) = ⟨ y − y ′ , y ′ ⟩ = ⟨ y − y ′ , y ⟩ ⟹ ∥ y ∥ 2 − 2 ⟨ y , y ′ ⟩ + ∥ y ′ ∥ 2 = 0 ⟹ ∥ y − y ′ ∥ 2 = 0 \begin{aligned} & f( y-y') =\langle y-y',y'\rangle =\langle y-y',y\rangle \\ \Longrightarrow & \| y\| ^{2} -2\langle y,y'\rangle +\| y'\| ^{2} =0\\ \Longrightarrow & \| y-y'\| ^{2} =0 \end{aligned} f(yy)=yy,y=yy,yy22y,y+y2=0yy2=0

因此 y = y ′ \displaystyle y=y' y=y,所以 f ( x ) = ⟨ x , y ⟩ \displaystyle f( x) =\langle x,y\rangle f(x)=x,y是唯一的,并且因为 y = f ( z ) ‾ ∥ z ∥ 2 z \displaystyle y=\frac{\overline{f( z)}}{\| z\| ^{2}} z y=z2f(z)z,所以 ∥ y ∥ = f ( z ) ‾ ∥ z ∥ 2 ∥ z ∥ = ∥ f ∥ \displaystyle \| y\| =\frac{\overline{f( z)}}{\| z\| ^{2}} \| z\| =\| f\| y=z2f(z)z=f.
证毕。

这个定理告诉我们,在希尔伯特空间中,对于任意的f(x),总能找到一个唯一的内积跟它相等,注意这个结论在一般的内积空间不总是成立的。

接下来我们可以给出kernel的一般定义:

Definition 4 (kernel) 令 X \displaystyle \mathcal{X} X为非空集合,如果存在real hilbert space H和映射 ϕ : X → H \displaystyle \phi :\mathcal{X}\rightarrow \mathcal{H} ϕ:XH使得

k ( x , y ) = ⟨ ϕ ( x ) , ϕ ( y ) ⟩ H , ∀ x , y ∈ H k( x,y) =\langle \phi ( x) ,\phi ( y) \rangle _{\mathcal{H}} ,\forall x,y\in \mathcal{H} k(x,y)=ϕ(x),ϕ(y)H,x,yH

则函数 k : X × X → R \displaystyle k:\mathcal{X} \times \mathcal{X}\rightarrow R k:X×XR称为kernel

在这里 ϕ : X → H \displaystyle \phi :\mathcal{X}\rightarrow \mathcal{H} ϕ:XH就是一个feature map特征映射,将X映射到希尔伯特空间H。注意这个定义并没有要求 ϕ \displaystyle \phi ϕ 满足再生核的性质,所以这就会出问题,我们发现这个kernel并不是唯一表示一个希尔伯特空间,也就是同一个kernel函数有可能对应多个不同的希尔伯特空间:

例子:我们可以构造两个不同的 ϕ \displaystyle \phi ϕ使得其内积相等。

k ( x , y ) = x y = [ x 2 x 2 ] [ y 2 y 2 ] k( x,y) =xy=\begin{bmatrix} \frac{x}{\sqrt{2}} & \frac{x}{\sqrt{2}} \end{bmatrix}\begin{bmatrix} \frac{y}{\sqrt{2}}\\ \frac{y}{\sqrt{2}} \end{bmatrix} k(x,y)=xy=[2 x2 x][2 y2 y]

显然第一个 k ( . , x ) = x \displaystyle k( .,x) =x k(.,x)=x,第二个 k ( . , x ) = [ x 2 x 2 ] \displaystyle k( .,x) =\begin{bmatrix} \frac{x}{\sqrt{2}} & \frac{x}{\sqrt{2}} \end{bmatrix} k(.,x)=[2 x2 x],他们分别属于空间: H = R , H = R 2 \displaystyle \mathcal{H} =R,\mathcal{H} =R^{2} H=R,H=R2
但是,如果 ϕ \displaystyle \phi ϕ满足再生核性质,那么可以证明kernel一定是唯一对应一个RKHS空间的

最后我们来证明这个核函数的最重要的特征,就是其正定性。

Definition 5 (Positive definite functions) 称一个对称函数 h : X × X → R \displaystyle h:\mathcal{X} \times \mathcal{X}\rightarrow R h:X×XR正定的,只要满足 ∀ n ⩾ 1 , ∀ ( a 1 , . . . , a n ) ∈ R n , ∀ ( x 1 , . . . , x n ) ∈ X n \displaystyle \forall n\geqslant 1,\forall ( a_{1} ,...,a_{n}) \in R^{n} ,\forall ( x_{1} ,...,x_{n}) \in \mathcal{X}^{n} n1,(a1,...,an)Rn,(x1,...,xn)Xn

∑ i = 1 n ∑ j = 1 n a i a j h ( x i , x j ) ⩾ 0 \sum ^{n}_{i=1}\sum ^{n}_{j=1} a_{i} a_{j} h( x_{i} ,x_{j}) \geqslant 0 i=1nj=1naiajh(xi,xj)0

称函数是严格正定(strictly positive definite)的,如果对于所有不同的 x i \displaystyle x_{i} xi,等号只有在所有 a i \displaystyle a_{i} ai等于0的时候才成立。
根据上面的定义,很容易证明就能证明核函数 k ( x , y ) \displaystyle k( x,y) k(x,y)是正定的:

∑ i = 1 n ∑ j = 1 n a i a j k ( x i , x j ) = ∑ i = 1 n ∑ j = 1 n ⟨ a i k ( ⋅ , x i ) , a j k ( ⋅ , x j ) ⟩ H = ⟨ ∑ i = 1 n a i k ( ⋅ , x i ) , ∑ j = 1 n a j k ( ⋅ , x j ) ⟩ H = ∥ ∑ i = 1 n a i k ( ⋅ , x i ) ∥ H 2 ⩾ 0 \begin{aligned} \sum ^{n}_{i=1}\sum ^{n}_{j=1} a_{i} a_{j} k( x_{i} ,x_{j}) & =\sum ^{n}_{i=1}\sum ^{n}_{j=1} \langle a_{i} k( \cdot ,x_{i}) ,a_{j} k( \cdot ,x_{j}) \rangle _{\mathcal{H}}\\ & =\langle \sum ^{n}_{i=1} a_{i} k( \cdot ,x_{i}) ,\sum ^{n}_{j=1} a_{j} k( \cdot ,x_{j}) \rangle _{\mathcal{H}}\\ & =\| \sum ^{n}_{i=1} a_{i} k( \cdot ,x_{i}) \| ^{2}_{\mathcal{H}} \geqslant 0 \end{aligned} i=1nj=1naiajk(xi,xj)=i=1nj=1naik(,xi),ajk(,xj)H=i=1naik(,xi),j=1najk(,xj)H=i=1naik(,xi)H20

介绍了上面这么多属性,我们终于可以开始自己构造一个再生希尔伯特空间了。为了得到一个RKHS我们会先构造一个pre-RKHS: H 0 \displaystyle \mathcal{H}_{0} H0,然后再从pre-RKHS构造出真正的RKHS. pre-RKHS 要满足的两个条件:
1. δ x \displaystyle \delta _{x} δx H 0 \displaystyle \mathcal{H}_{0} H0是连续的
2. 所有 H 0 \displaystyle \mathcal{H}_{0} H0中收敛到0的柯西列 f n \displaystyle f_{n} fn同时在范数中收敛到0,即 f n → 0 ⟹ ∥ f n ∥ H 0 → 0 \displaystyle f_{n}\rightarrow 0\Longrightarrow \| f_{n} \| _{\mathcal{H}_{0}}\rightarrow 0 fn0fnH00

Theorem 3 (Moore-Aronszajn定理) 设 k : X × X → R \displaystyle k:\mathcal{X} \times \mathcal{X}\rightarrow R k:X×XR是正定的,一定存在一个唯一的RKHS H ⊂ R X \displaystyle \mathcal{H} \subset R^{\mathcal{X}} HRX其再生核为k。此外,如果空间 H 0 = s p a n [ { k ( ⋅ , x ) } x ∈ X ] \displaystyle \mathcal{H}_{0} =span[\{k( \cdot ,x)\}_{x\in \mathcal{X}}] H0=span[{k(,x)}xX]赋予其这样的内积:

⟨ f , g ⟩ H 0 = ∑ i = 1 n ∑ j = 1 m α i β j k ( x i , x j ) \langle f,g\rangle _{\mathcal{H}_{0}} =\sum ^{n}_{i=1}\sum ^{m}_{j=1} \alpha _{i} \beta _{j} k( x_{i} ,x_{j}) f,gH0=i=1nj=1mαiβjk(xi,xj)

其中 f = ∑ i = 1 n α i k ( ⋅ , x i ) , g = ∑ j = 1 n β j k ( ⋅ , x j ) \displaystyle f=\sum ^{n}_{i=1} \alpha _{i} k( \cdot ,x_{i}) ,g=\sum ^{n}_{j=1} \beta _{j} k( \cdot ,x_{j}) f=i=1nαik(,xi),g=j=1nβjk(,xj),则 H 0 \displaystyle \mathcal{H}_{0} H0是一个有效的RKHS.
证明:首先证明上述内积是合法的内积

⟨ f , k ( ⋅ , x ) ⟩ H 0 = ∑ i = 1 n α i k ( x , x i ) = f ( x ) \langle f,k( \cdotp ,x) \rangle _{\mathcal{H}_{0}} =\sum ^{n}_{i=1} \alpha _{i} k( x,x_{i}) =f( x) f,k(,x)H0=i=1nαik(x,xi)=f(x)

因此

∣ δ x ( f ) − δ x ( g ) ∣ = ∣ f ( x ) − g ( x ) ∣ = ∣ ⟨ f , k ( ⋅ , x ) ⟩ H 0 − ⟨ g , k ( ⋅ , x ) ⟩ H 0 ∣ = ∣ ⟨ f − g , k ( ⋅ , x ) ⟩ H 0 ∣ ⩽ ∥ f − g ∥   ∥ k ( ⋅ , x ) ∥ = ∥ f − g ∥   k 1 / 2 ( x , x ) \begin{aligned} |\delta _{x}( f) -\delta _{x}( g) | & =|f( x) -g( x) |\\ & =|\langle f,k( \cdotp ,x) \rangle _{\mathcal{H}_{0}} -\langle g,k( \cdotp ,x) \rangle _{\mathcal{H}_{0}} |\\ & =|\langle f-g,k( \cdotp ,x) \rangle _{\mathcal{H}_{0}} |\\ & \leqslant \| f-g\| \ \| k( \cdotp ,x) \| \\ & =\| f-g\| \ k^{1/2}( x,x) \end{aligned} δx(f)δx(g)=f(x)g(x)=f,k(,x)H0g,k(,x)H0=fg,k(,x)H0fg k(,x)=fg k1/2(x,x)

不等于号来自与cauchy-schwarz不等式( ∣ ⟨ f , g ⟩ ∣ ⩽ ∥ f ∥   ∥ g ∥ \displaystyle |\langle f,g\rangle |\leqslant \| f\| \ \| g\| f,gf g),从该不等式我们可以得出 δ x \displaystyle \delta _{x} δx是有界的,因此是连续的,满足了pre-RKHS的第一个条件。

对于任意的 ϵ &gt; 0 \displaystyle \epsilon &gt;0 ϵ>0,现定义柯西列 { f n } \displaystyle \{f_{n}\} {fn}是收敛到0的。因此 { f n } \displaystyle \{f_{n}\} {fn}是有界的,所以定义一个A使得 ∥ f n ∥ H 0 &lt; A , ∀ n ∈ N \displaystyle \| f_{n} \| _{\mathcal{H}_{0}} &lt; A,\forall n\in N fnH0<A,nN. 于是总能找到一个 N 1 ∈ N , s . t .   ∥ f n − f m ∥ H 0 &lt; ϵ / 2 A ,   n , m ⩾ N 1 \displaystyle N_{1} \in N,s.t.\ \| f_{n} -f_{m} \| _{\mathcal{H}_{0}} &lt; \epsilon /2A,\ n,m\geqslant N_{1} N1N,s.t. fnfmH0<ϵ/2A, n,mN1.记 f N 1 = ∑ i = 1 r α i k ( ⋅ , x i ) \displaystyle f_{N_{1}} =\sum ^{r}_{i=1} \alpha _{i} k( \cdot ,x_{i}) fN1=i=1rαik(,xi). 另外,存在 N 2 ∈ N , s . t .   n ⩾ N 2 , ∣ f n ( x i ) ∣ &lt; ϵ 2 r ∣ α i ∣ \displaystyle N_{2} \in N,s.t.\ n\geqslant N_{2} ,|f_{n}( x_{i}) |&lt; \frac{\epsilon }{2r|\alpha _{i} |} N2N,s.t. nN2,fn(xi)<2rαiϵ对于 i = 1 , . . . , r \displaystyle i=1,...,r i=1,...,r成立。 现在考虑 n ⩾ max ⁡ ( N 1 , N 2 ) \displaystyle n\geqslant \max( N_{1} ,N_{2}) nmax(N1,N2)

∥ f n ∥ H 0 2 = ∣ ⟨ f n − f N 1 , f n ⟩ H 0 + ⟨ f N 1 , f n ⟩ H 0 ∣ ⩽ ∣ ⟨ f n − f N 1 , f n ⟩ H 0 ∣ + ∣ ⟨ f N 1 , f n ⟩ H 0 ∣ ⩽ ∥ f n − f N 1 ∥   ∥ f n ∥ + ∑ i = 1 r ∣ α i f n ( x i ) ∣ &lt; ϵ 2 A A + r ϵ 2 r ∣ α i ∣ = ϵ \begin{aligned} \| f_{n} \| ^{2}_{\mathcal{H}_{0}} &amp; =|\langle f_{n} -f_{N_{1}} ,f_{n} \rangle _{\mathcal{H}_{0}} +\langle f_{N_{1}} ,f_{n} \rangle _{\mathcal{H}_{0}} |\\ &amp; \leqslant |\langle f_{n} -f_{N_{1}} ,f_{n} \rangle _{\mathcal{H}_{0}} |+|\langle f_{N_{1}} ,f_{n} \rangle _{\mathcal{H}_{0}} |\\ &amp; \leqslant \| f_{n} -f_{N_{1}} \| \ \| f_{n} \| +\sum ^{r}_{i=1} |\alpha _{i} f_{n}( x_{i}) |\\ &amp; &lt; \frac{\epsilon }{2A} A+r\frac{\epsilon }{2r|\alpha _{i} |} =\epsilon \end{aligned} fnH02=fnfN1,fnH0+fN1,fnH0fnfN1,fnH0+fN1,fnH0fnfN1 fn+i=1rαifn(xi)<2AϵA+r2rαiϵ=ϵ

因此 ∥ f n ∥ H 0 → 0 \displaystyle \| f_{n} \| _{\mathcal{H}_{0}}\rightarrow 0 fnH00.
最后我们证明 H \displaystyle \mathcal{H} H上的reproducing kernel是k. 我们可以简单设 f ∈ H \displaystyle f\in \mathcal{H} fH,在 H 0 \displaystyle \mathcal{H}_{0} H0的柯西列 f n \displaystyle f_{n} fnpoint wise收敛于f于是:

⟨ f , k ( ⋅ , x ) ⟩ H = lim ⁡ n → ∞ ⟨ f n , k ( ⋅ , x ) ⟩ H 0 = lim ⁡ n → ∞ f n ( x ) = f ( x ) \begin{aligned} \langle f,k( \cdot ,x) \rangle _{\mathcal{H}} &amp; =\lim _{n\rightarrow \infty } \langle f_{n} ,k( \cdot ,x) \rangle _{\mathcal{H}_{0}}\\ &amp; =\lim _{n\rightarrow \infty } f_{n}( x)\\ &amp; =f( x) \end{aligned} f,k(,x)H=nlimfn,k(,x)H0=nlimfn(x)=f(x)

于是 H 0 \displaystyle \mathcal{H}_{0} H0 H \displaystyle \mathcal{H} H中是稠密的,因此 H \displaystyle \mathcal{H} H是包含 H 0 \displaystyle \mathcal{H}_{0} H0的唯一RKHS,且因为 k ( ⋅ , x ) ∈ H , ∀ x ∈ X \displaystyle k( \cdotp ,x) \in \mathcal{H} ,\forall x\in X k(,x)H,xX,所有拥有再生核k的RKHS一定包含 H 0 \displaystyle \mathcal{H}_{0} H0.
证毕。

更多详细内容可以看参考资料。

参考资料

What is an RKHS?
泛函分析讲义 黎永锦 提取码: d9km
再生核希尔伯特空间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值