编程之美 1.11 一排石头的游戏

1.11 一排石头的游戏

        N块石头排成一行,每块石头有各自固定的位置,两个玩家依次取石头,每个玩家每次可以去任意一块或者相邻的两块石头,石头在游戏过程中不能移动,最后将剩下的石头一次取光的玩家获胜。这个游戏有必胜的策略吗?
在这里插入图片描述
假设甲乙两人,甲先拿
解题思路:归纳法
1、1个石头
在这里插入图片描述
甲先1号石头,甲获取的胜利。
2、2个石头
在这里插入图片描述
甲先拿1号,2号石头,甲获取胜利。
3、3个石头
在这里插入图片描述
甲先拿2号石头,乙只能拿1号或3号,甲最后拿剩下的那个,甲获取胜利。
4、4个石头
在这里插入图片描述
甲先拿2号3号石头,乙只能拿1号或4号石头,甲拿剩余的一个。家获取胜利。
5、5个石头
在这里插入图片描述
甲先拿3号石头,乙若只拿一个或二个,甲拿对称的石头和数量,到最后就会获取胜利。
6、N个石头
        归纳:对称规律,先拿中间的石头,N是单数拿一个,N是双数拿二个,之后拿对方对称位置相同数量的石头就行。
示例代码:

#include <iostream>
using namespace std;
#include<cstdlib>
#include <ctime>
#include <String>

char *gStone;
#define STONENUM  1885
int StoneNum = STONENUM;

// 随机返回拿石头的数量
int getNum()
{
	return rand() % 2 + 1;
}

// 随机返回剩余的第几个石头
int getOrder(int max)
{
	return rand() % max + 1;
}

// 指定位置是否可以拿两个石头
bool isCanTakeTwoStone(int pos)
{
	if (pos == STONENUM)
		return false;

	return gStone[pos + 1];
}

// 在指定位置拿指定数量的石头:拿两个石头,规定只能拿位置右侧的石头
void TakePosStone(string person, int pos, int num)
{
	if (num == 1)
	{
		cout << person<<"取走" << pos << "号石头" << endl;
		gStone[pos] = 0;
		StoneNum = StoneNum - 1;
	}
	else if (num == 2)
	{
		cout << person << "取走" << pos << " ," << pos + 1 << "号石头" << endl;
		gStone[pos] = gStone[pos + 1] = 0;
		StoneNum = StoneNum - 2;
	}

}

// 乙在随机位置随机拿一个或两个石头
int YITakeStone(int pos)
{
	int num = 1;
	if (isCanTakeTwoStone(pos))
	{
		num = getNum();
	}
	TakePosStone("乙", pos, num);
	return num;
}

void JIATakeStone(int pos,int num)
{
	int rePos = 0;
	// 根据乙拿的石头位置和数量得出对称位置
	rePos = STONENUM - pos + 2 - num;
	TakePosStone("甲",rePos,num);
}


int getPos(int order)
{
	int pos = 0;
	for (int i = 1; i <= STONENUM; ++i)
	{
		if (gStone[i] != 0)
		{
			pos++;
			if (pos == order)
			{
				return i;
			}			
		}
	}

	return 0;
}

int main()
{
	// 随机数种子
	srand(time(0));


	gStone = new char[STONENUM +1];
	for (int i = 1; i <= STONENUM; ++i)
		gStone[i] = i;

	// 甲先拿中心的处的石头
	if (StoneNum % 2 == 0)
	{
		cout << "甲" << "取走" << STONENUM /2 << " ," << STONENUM / 2 + 1 << "号石头" << endl;
		StoneNum = StoneNum - 2;
		gStone[STONENUM / 2] = gStone[STONENUM / 2 +1]= 0;
	}
	else
	{
		cout << "甲" << "取走" << STONENUM / 2 + 1 << "号石头" << endl;
		StoneNum = StoneNum - 1;
		gStone[STONENUM / 2 + 1] = 0;
	}
	
	while (StoneNum)
	{
		// 随机返回剩余的第几个石头
		int order = getOrder(StoneNum);

		// 得出在整个序列中的位置
		int pos = getPos(order);

		// 乙在随机位置随机拿一个或两个石头
		int num = YITakeStone(pos);

		//甲拿对称位置处的相同数量石头
		JIATakeStone(pos, num);
	}
	getchar();
}

        这个题目原理简单,使用程序实现主要考虑的就是乙拿石头的随机性,这需要产生随机数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值