改进yolo11-SCcConv等200+全套创新点大全:罐头食品表面缺陷检测系统源码&数据集全套
1.图片效果展示
项目来源 人工智能促进会 2024.10.24
注意:由于项目一直在更新迭代,上面“1.图片效果展示”和“2.视频效果展示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)
(1)适配了YOLOV11的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。
(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。
(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。
(4)支持Web前端系统中的标题、背景图等自定义修改。
另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。
2.视频效果展示
3.背景
研究背景与意义
随着食品工业的快速发展,罐头食品因其便捷性和较长的保质期而受到广泛欢迎。然而,罐头食品在生产和包装过程中可能会出现各种表面缺陷,这些缺陷不仅影响产品的外观质量,还可能对消费者的健康构成潜在威胁。因此,开发高效、准确的缺陷检测系统显得尤为重要。传统的人工检测方法不仅耗时耗力,而且容易受到人为因素的影响,导致检测结果的不一致性和不可靠性。因此,基于计算机视觉和深度学习技术的自动化缺陷检测系统逐渐成为研究的热点。
本研究旨在基于改进的YOLOv11模型,构建一个高效的罐头食品表面缺陷检测系统。YOLO(You Only Look Once)系列模型以其快速的检测速度和较高的准确率而广泛应用于物体检测领域。通过对YOLOv11进行改进,结合罐头食品表面缺陷的特征,我们期望能够提高模型在特定场景下的检测性能。为此,我们使用了一个包含8000张图像的数据集,数据集中涵盖了四类缺陷:严重缺陷、主要缺陷、次要缺陷和无缺陷。这一丰富的数据集为模型的训练和验证提供了坚实的基础,使得模型能够在多样化的场景中进行有效的学习。
通过本研究,我们不仅希望提高罐头食品表面缺陷的检测精度,还希望为食品安全监管提供技术支持。自动化的缺陷检测系统将大大提高生产效率,降低人工成本,并提升消费者对产品质量的信任度。最终,研究成果将为食品行业的智能化转型提供重要的理论依据和实践参考,推动相关技术的进一步发展与应用。
4.数据集信息展示
4.1 本项目数据集详细数据(类别数&类别名)
nc: 4
names: [‘Critical Defect’, ‘Major Defect’, ‘Minor Defect’, ‘No defect’]
该项目为【目标检测】数据集,请在【训练教程和Web端加载模型教程(第三步)】这一步的时候按照【目标检测】部分的教程来训练
4.2 本项目数据集信息介绍
本项目数据集信息介绍
本项目所使用的数据集名为“canned-food-surface-defect”,旨在为改进YOLOv11的罐头食品表面缺陷检测系统提供强有力的支持。该数据集专注于罐头食品的表面缺陷检测,涵盖了四种主要的缺陷类别,分别为“Critical Defect”(严重缺陷)、“Major Defect”(主要缺陷)、“Minor Defect”(次要缺陷)以及“No defect”(无缺陷)。这些类别的划分不仅有助于提高缺陷检测的准确性,还能为后续的质量控制和产品改进提供重要的参考依据。
在数据集的构建过程中,采用了多种拍摄角度和光照条件,以确保模型在不同环境下的鲁棒性。每个类别的样本数量经过精心设计,以平衡各类缺陷的代表性,确保模型能够有效学习到每种缺陷的特征。此外,数据集中包含了大量的标注图像,标注信息详细且准确,为训练和验证阶段提供了可靠的数据基础。
通过对“canned-food-surface-defect”数据集的深入分析,研究人员能够识别出不同缺陷在视觉上的细微差别,从而为YOLOv11模型的改进提供数据支持。该数据集不仅适用于模型的训练,还可以用于后续的测试和评估,确保检测系统在实际应用中的有效性和准确性。随着数据集的不断扩展和优化,罐头食品表面缺陷检测的智能化水平将不断提升,为食品行业的质量管理提供更加精准的解决方案。
5.全套项目环境部署视频教程(零基础手把手教学)
5.1 所需软件PyCharm和Anaconda安装教程(第一步)
5.2 安装Python虚拟环境创建和依赖库安装视频教程(第二步)
6.改进YOLOv11训练教程和Web_UI前端加载模型教程(零基础手把手教学)
6.1 改进YOLOv11训练教程和Web_UI前端加载模型教程(第三步)
按照上面的训练视频教程链接加载项目提供的数据集,运行train.py即可开始训练
Epoch gpu_mem box obj cls labels img_size
1/200 20.8G 0.01576 0.01955 0.007536 22 1280: 100%|██████████| 849/849 [14:42<00:00, 1.04s/it]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|██████████| 213/213 [01:14<00:00, 2.87it/s]
all 3395 17314 0.994 0.957 0.0957 0.0843
Epoch gpu_mem box obj cls labels img_size
2/200 20.8G 0.01578 0.01923 0.007006 22 1280: 100%|██████████| 849/849 [14:44<00:00, 1.04s/it]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|██████████| 213/213 [01:12<00:00, 2.95it/s]
all 3395 17314 0.996 0.956 0.0957 0.0845
Epoch gpu_mem box obj cls labels img_size
3/200 20.8G 0.01561 0.0191 0.006895 27 1280: 100%|██████████| 849/849 [10:56<00:00, 1.29it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|███████ | 187/213 [00:52<00:00, 4.04it/s]
all 3395 17314 0.996 0.957 0.0957 0.0845
项目数据集下载链接
7.原始YOLOv11算法讲解
其实到了YOLOV11 基本创新点就不太多了,主要就是大家互相排列组合复用不同的网络模块、损失函数和样本匹配策略,需要注意YOLO V5、V8 V11
都是1个公司的,其余的个人建议看看V8的,剩下的了解就好。
V11支持多种视觉任务:物体检测、实例分割、图像分类、姿态估计和定向物体检测(OBB)。
YOLOv11
基本和YOLOV8同源,甚至git目前都是1个,部分代码注释还是YOLOV8的,所以建议先看我写的YOLOV8相关博客,对比YOLOV8主要涉及到:
*backbone 中的使用C2f模块 变为 c3k2 模块。
*backbone 中的最后一层(sppf层)后增加了C2PSA模块。
*head 解耦头中的分类检测头两个Conv 变为 DWConv。
整体技术而言:
*backbone 使用了C2K2模块+最后SPPF模块级联C2PSA模块;
*neck 使用PAN结构,并且里面也使用C3K2模块;
*head使用了anchor-free + Decoupled-head,其中回归头使用正常的卷积,分类头使用DWConv;
*损失函数使用了分类BCE、回归CIOU + VFL的组合;
*框匹配策略由静态匹配改为了Task-Aligned Assigner匹配方式;
*训练策略没有提及,其中YOLOV8可以参考如下最后 10 个 epoch 关闭 Mosaic 的操作、训练总 epoch 数从 300 提升到了 500。
主要思路
配置文件:ultralytics/ultralytics/cfg/models/11/yolo11.yaml at main ·
ultralytics/ultralytics ·
GitHub
解析函数:ultralytics/ultralytics/nn/tasks.py at main · ultralytics/ultralytics ·
GitHub
具体细节
input
输入要求以及预处理,可选项比较多,可以参考这个配置文件:ultralytics/ultralytics/cfg/default.yaml at main
· ultralytics/ultralytics ·
GitHub 的Hyperparameters 部分。
基础输入仍然为640*640。预处理就是熟悉的letterbox(根据参数配置可以为不同的缩放填充模式,主要用于resize到640)+
转换rgb、chw、int8(0-255)->float(0-1),注意没有归一化操作。需要注意的是作者实现的mosaic和网上看到的不同,对比如下图(左边网上版本,右边是YOLO的实现)。并且作者添加了在最后10轮关闭mosaic增强(YOLOV8开始支持,具体原因个人的经验如我的这篇文章:yolov5
mosaic相关,关闭参数在 Train settings 部分的close_mosaic 选项)
backbone
主干网络以及改进
这里不去特意强调对比YOLOv5、V8等等的改进,因为各个系列都在疯狂演进,个人认为没必要花费时间看差异,着重看看一些比较重要的模块即可。源代码:
大多数模块:ultralytics/ultralytics/nn/modules/block.py at main ·
ultralytics/ultralytics ·
GitHub
head 部分:ultralytics/ultralytics/nn/modules/head.py at main ·
ultralytics/ultralytics ·
GitHub
串联模块构造网络:ultralytics/ultralytics/nn/tasks.py at main ·
ultralytics/ultralytics ·
GitHub
1)CBS 模块(后面叫做Conv)
就是pytorch 自带的conv + BN +SiLU,这里对应上面的配置文件的Conv 的 args 比如[64, 3, 2] 就是 conv2d
的c2=64、k=3、 s =2、c1 自动为上一层参数、p 为自动计算,真实需要计算scales 里面的with 和 max_channels 缩放系数。
这里连续使用两个3*3卷积stride为2的CBS模块直接横竖各降低了4倍分辨率(整体变为原来1/16)。这个还是比较猛的,敢在如此小的感受野下连续两次仅仅用一层卷积就下采样,当然作为代价它的特征图还是比较厚的分别为16、32。
class Conv(nn.Module):
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""Initialize Conv layer with given arguments including activation."""
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""Apply convolution, batch normalization and activation to input tensor."""
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""Perform transposed convolution of 2D data."""
return self.act(self.conv(x))
2)c3k2 模块
Bottleneck
有两种结构,需要参数shortcut和两个conv的宽度是否相同来控制。
C3 & C3K
都是CSP bottleneck module with 3 convolutions, C3 代表3个卷积层,
K代表其中bottleneck中的卷积核为支持自定义,其实这里c3k作者使用的默认的33卷积核也就等同于使用c3(c3是33卷积核)。
c2f & c3k2
其实也就是仿照YOLOv7 的ELAN
结构,通过更多的分支夸层链接,丰富了模型的梯度流。C3K2模块其实就是C2F模块转变出来的,它代码中有一个设置,就是当c3k这个参数为FALSE的时候,C3K2模块就是C2F模块,也就是说它的Bottleneck是普通的Bottleneck;反之当它为true的时候,将Bottleneck模块替换成C3K模块。模块中存在
Split 等操作对特定硬件部署没有之前那么友好了。需要针对自己的硬件进行测试看对最终推理速度的影响。
可视化关系如下,这里需要注意配置文件中的参数,比如21行[-1, 2, C3k2, [512, False, 0.25]]
512代表宽度、false代表是否使用shortcut、0.25代表c2f的宽度缩放。也就是第一个Conv的输出宽度。
源代码如下:
class Bottleneck(nn.Module):
"""Standard bottleneck."""
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
"""Initializes a standard bottleneck module with optional shortcut connection and configurable parameters."""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, k[0], 1)
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
"""Applies the YOLO FPN to input data."""
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class C3(nn.Module):
"""CSP Bottleneck with 3 convolutions."""
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
"""Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))
def forward(self, x):
"""Forward pass through the CSP bottleneck with 2 convolutions."""
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
class C3k(C3):
"""C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):
"""Initializes the C3k module with specified channels, number of layers, and configurations."""
super().__init__(c1, c2, n, shortcut, g, e)
c_ = int(c2 * e) # hidden channels
# self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
class C2f(nn.Module):
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
"""Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing."""
super().__init__()
self.c = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
def forward(self, x):
"""Forward pass through C2f layer."""
y = list(self.cv1(x).chunk(2, 1))
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
def forward_split(self, x):
"""Forward pass using split() instead of chunk()."""
y = list(self.cv1(x).split((self.c, self.c), 1))
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
class C3k2(C2f):
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
"""Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
super().__init__(c1, c2, n, shortcut, g, e)
self.m = nn.ModuleList(
C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
)
3)sppf 模块
对比spp,将简单的并行max pooling 改为串行+并行的方式。对比如下(左边是SPP,右边是SPPF):
class SPPF(nn.Module):
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_ * 4, c2, 1, 1)
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
def forward(self, x):
x = self.cv1(x)
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
y1 = self.m(x)
y2 = self.m(y1)
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
4)C2PSA 模块
C2PSA它结合了PSA(Pointwise Spatial
Attention)块,用于增强特征提取和注意力机制。下面的图建议从左到右看,这样才能更有条理的理解,其实PSA个人感觉就是仿着VIT
的Attention来做的,是把输入C2PSA的特征图的hw 看做VIT 的path数(也可以理解为NLP中token 个数),特征图的channel
数看做VIT特征维度(CNN的宽度,或者理解为NLP中token
编码后的特征维度),然后计算出QKV(这里需要注意第四幅图的QKV是值,不是操作,所以标注成了圆角矩形,这里是为了大家好理解),这里的Attention其实是在hw维度计算空间Attention,个人感觉是强制给了全局感受野,并且并联了一个33的深度可分离卷积的单空间部分,就是仅在每一个特征图上进行33卷积,具体实现是通过pytorch
conv2d 的
group参数设置为特征图的通道数。特别的关于Conv的参数分别为:输入通道数、输出通道数、卷积核尺寸、pad尺寸、group数、是否有激活函数(默认silu)。图中的最后一幅省略了一些细节,可以参考源码。
注意区别C2fPSA,C2fPSA才是对 C2f 模块的扩展,通过在标准 C2f 模块中引入 PSA
块,C2fPSA实现了更强大的注意力机制,从而提高了模型对重要特征的捕捉能力。作者实现了该模块但最终没有使用。
涉及的源码:
class Attention(nn.Module):
"""
Attention module that performs self-attention on the input tensor.
Args:
dim (int): The input tensor dimension.
num_heads (int): The number of attention heads.
attn_ratio (float): The ratio of the attention key dimension to the head dimension.
Attributes:
num_heads (int): The number of attention heads.
head_dim (int): The dimension of each attention head.
key_dim (int): The dimension of the attention key.
scale (float): The scaling factor for the attention scores.
qkv (Conv): Convolutional layer for computing the query, key, and value.
proj (Conv): Convolutional layer for projecting the attended values.
pe (Conv): Convolutional layer for positional encoding.
"""
def __init__(self, dim, num_heads=8, attn_ratio=0.5):
"""Initializes multi-head attention module with query, key, and value convolutions and positional encoding."""
super().__init__()
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.key_dim = int(self.head_dim * attn_ratio)
self.scale = self.key_dim**-0.5
nh_kd = self.key_dim * num_heads
h = dim + nh_kd * 2
self.qkv = Conv(dim, h, 1, act=False)
self.proj = Conv(dim, dim, 1, act=False)
self.pe = Conv(dim, dim, 3, 1, g=dim, act=False)
def forward(self, x):
"""
Forward pass of the Attention module.
Args:
x (torch.Tensor): The input tensor.
Returns:
(torch.Tensor): The output tensor after self-attention.
"""
B, C, H, W = x.shape
N = H * W
qkv = self.qkv(x)
q, k, v = qkv.view(B, self.num_heads, self.key_dim * 2 + self.head_dim, N).split(
[self.key_dim, self.key_dim, self.head_dim], dim=2
)
attn = (q.transpose(-2, -1) @ k) * self.scale
attn = attn.softmax(dim=-1)
x = (v @ attn.transpose(-2, -1)).view(B, C, H, W) + self.pe(v.reshape(B, C, H, W))
x = self.proj(x)
return x
class PSABlock(nn.Module):
"""
PSABlock class implementing a Position-Sensitive Attention block for neural networks.
This class encapsulates the functionality for applying multi-head attention and feed-forward neural network layers
with optional shortcut connections.
Attributes:
attn (Attention): Multi-head attention module.
ffn (nn.Sequential): Feed-forward neural network module.
add (bool): Flag indicating whether to add shortcut connections.
Methods:
forward: Performs a forward pass through the PSABlock, applying attention and feed-forward layers.
Examples:
Create a PSABlock and perform a forward pass
>>> psablock = PSABlock(c=128, attn_ratio=0.5, num_heads=4, shortcut=True)
>>> input_tensor = torch.randn(1, 128, 32, 32)
>>> output_tensor = psablock(input_tensor)
"""
def __init__(self, c, attn_ratio=0.5, num_heads=4, shortcut=True) -> None:
"""Initializes the PSABlock with attention and feed-forward layers for enhanced feature extraction."""
super().__init__()
self.attn = Attention(c, attn_ratio=attn_ratio, num_heads=num_heads)
self.ffn = nn.Sequential(Conv(c, c * 2, 1), Conv(c * 2, c, 1, act=False))
self.add = shortcut
def forward(self, x):
"""Executes a forward pass through PSABlock, applying attention and feed-forward layers to the input tensor."""
x = x + self.attn(x) if self.add else self.attn(x)
x = x + self.ffn(x) if self.add else self.ffn(x)
return x
class C2PSA(nn.Module):
"""
C2PSA module with attention mechanism for enhanced feature extraction and processing.
This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing
capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations.
Attributes:
c (int): Number of hidden channels.
cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
m (nn.Sequential): Sequential container of PSABlock modules for attention and feed-forward operations.
Methods:
forward: Performs a forward pass through the C2PSA module, applying attention and feed-forward operations.
Notes:
This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules.
Examples:
>>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5)
>>> input_tensor = torch.randn(1, 256, 64, 64)
>>> output_tensor = c2psa(input_tensor)
"""
def __init__(self, c1, c2, n=1, e=0.5):
"""Initializes the C2PSA module with specified input/output channels, number of layers, and expansion ratio."""
super().__init__()
assert c1 == c2
self.c = int(c1 * e)
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv(2 * self.c, c1, 1)
self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n)))
def forward(self, x):
"""Processes the input tensor 'x' through a series of PSA blocks and returns the transformed tensor."""
a, b = self.cv1(x).split((self.c, self.c), dim=1)
b = self.m(b)
return self.cv2(torch.cat((a, b), 1))
3、neck & head
1)检测头
YOLOV11 Head 部分和YOLOV8是近似的,所以简单对比YOLOV5、V8、V11。
如上面图,上边是YOLOV5 的结构,中是YOLOv8 的结构,下面是YOLOV11 结构
Yolov5: 检测和分类共用一个卷积(coupled head)并且是anchor based ,其 卷积输出为(5+N class)*3,其中
5为bbox 四个值(具体代表什么不同版本略有不同,官方git有说明,历史版本见 目标检测算法——YOLOV5 )+ 一个obj 值
(是否有目标,这个是从YOLO V1 传承下来的,个人感觉有点绕和不合理,并且后面取消),N class 为类别数,3为anchor 的数量,默认是3个。
YOLOv8:检测和分类的卷积是解耦的(decoupled),如中图,上面一条卷积支路是回归框,框的特征图channel为4*regmax,关于这个regmax
后面我们详细的解释,并不是anchor;分类的channel 为类别数。
YOLOV11:检测和分类的卷积是解耦的(decoupled),如右图,上面一条卷积支路是回归框,框的特征图channel为4*regmax,关于这个regmax
后面我们详细的解释,并不是anchor;分类的channel 为类别数,分类使用深度可分离卷积替代常规卷积降低计算量。
源码部分如下
class Detect(nn.Module):
"""YOLO Detect head for detection models."""
dynamic = False # force grid reconstruction
export = False # export mode
end2end = False # end2end
max_det = 300 # max_det
shape = None
anchors = torch.empty(0) # init
strides = torch.empty(0) # init
def __init__(self, nc=80, ch=()):
"""Initializes the YOLO detection layer with specified number of classes and channels."""
super().__init__()
self.nc = nc # number of classes
self.nl = len(ch) # number of detection layers
self.reg_max = 16 # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
self.no = nc + self.reg_max * 4 # number of outputs per anchor
self.stride = torch.zeros(self.nl) # strides computed during build
c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100)) # channels
self.cv2 = nn.ModuleList(
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch
)
self.cv3 = nn.ModuleList(
nn.Sequential(
nn.Sequential(DWConv(x, x, 3), Conv(x, c3, 1)),
nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1)),
nn.Conv2d(c3, self.nc, 1),
)
for x in ch
)
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
if self.end2end:
self.one2one_cv2 = copy.deepcopy(self.cv2)
self.one2one_cv3 = copy.deepcopy(self.cv3)
def forward(self, x):
"""Concatenates and returns predicted bounding boxes and class probabilities."""
if self.end2end:
return self.forward_end2end(x)
for i in range(self.nl):
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
if self.training: # Training path
return x
y = self._inference(x)
return y if self.export else (y, x)
因此主要的变化可以认为有三个:(1)coupled head -> decoupled head ;(2)obj 分支消失;(3)anchor
based——> anchor free ; 4) 深度可分离卷积。
(1)coupled head -> decoupled head
这个解耦操作,看YOLO x 的论文,约有1% 的提升。逻辑和实现都比较直观易懂,不再赘述。
(2)obj 分支消失;
这个其实我自己再看YOLO V1 的时候就有疑问,它存在的意义。后来人们发现,其实obj
的在训练和推理过程中存在逻辑不一致性。具体而言(摘自“https://zhuanlan.zhihu.com/p/147691786”)
A。用法不一致。训练的时候,分类和质量估计各自训练自个儿的,但测试的时候却又是乘在一起作为NMS score排序的依据,这个操作显然没有end-to-
end,必然存在一定的gap。(个人认为还好,就是两个监督信号)
B。对象不一致。借助Focal
Loss的力量,分类分支能够使得少量的正样本和大量的负样本一起成功训练,但是质量估计通常就只针对正样本训练。那么,对于one-
stage的检测器而言,在做NMS
score排序的时候,所有的样本都会将分类score和质量预测score相乘用于排序,那么必然会存在一部分分数较低的“负样本”的质量预测是没有在训练过程中有监督信号的,对于大量可能的负样本,他们的质量预测是一个未定义行为。这就很有可能引发这么一个情况:一个分类score相对低的真正的负样本,由于预测了一个不可信的极高的质量score,而导致它可能排到一个真正的正样本(分类score不够高且质量score相对低)的前面。问题一如图所示:
(3)anchor based——> anchor free
这里主要涉及怎么定义回归内容以及如何匹配GT框的问题。也就是如下:
2)匹配策略
A。回归的内容当前版本就是回归的lftp四个值(这四个值是距离匹配到的anchor 点的距离值!不是图片的绝对位置)。后面推理阶段通过
dist2bbox函数转换为需要的格式:
def dist2bbox(distance, anchor_points, xywh=True, dim=-1):
"""Transform distance(ltrb) to box(xywh or xyxy)."""
lt, rb = torch.split(distance, 2, dim)
x1y1 = anchor_points - lt
x2y2 = anchor_points + rb
if xywh:
c_xy = (x1y1 + x2y2) / 2
wh = x2y2 - x1y1
return torch.cat((c_xy, wh), dim) # xywh bbox
return torch.cat((x1y1, x2y2), dim) # xyxy bbox
B.匹配策略
YOLOv5 采用静态的匹配策略,V8采用了动态的TaskAlignedAssigner,其余常见的动态匹配还有: YOLOX 的 simOTA、TOOD
的 TaskAlignedAssigner 和 RTMDet 的 DynamicSoftLabelAssigner。
TaskAligned使用分类得分和IoU的高阶组合来衡量Task-Alignment的程度。使用上面公式来对每个实例计算Anchor-level
的对齐程度:s 和 u 分别为分类得分和 IoU 值,α 和 β 为权重超参。t 可以同时控制分类得分和IoU 的优化来实现 Task-
Alignment,可以引导网络动态的关注于高质量的Anchor。采用一种简单的分配规则选择训练样本:对每个实例,选择m个具有最大t值的Anchor作为正样本,选择其余的Anchor作为负样本。然后,通过损失函数(针对分类与定位的对齐而设计的损失函数)进行训练。
默认参数如下(当前版本这些超参没有提供修改的接口,如需修改需要在源码上进行修改):
4、loss function
损失函数设计
Loss 计算包括 2 个分支: 分类和回归分支,没有了之前的 objectness 分支。
分类分支依然采用 BCE Loss。回归分支使用了 Distribution Focal Loss(DFL Reg_max默认为16)+ CIoU
Loss。3 个 Loss
采用一定权重比例加权即可(默认如下:https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/configs/default.yaml#L83)。
这里重点介绍一下DFL损失。目前被广泛使用的bbox表示可以看作是对bbox方框坐标建模了单一的狄拉克分布。但是在复杂场景中,一些检测对象的边界并非十分明确。如下图左面所示,对于滑板左侧被水花模糊,引起对左边界的预测分布是任意而扁平的,对右边界的预测分布是明确而尖锐的。对于这个问题,有学者提出直接回归一个任意分布来建模边界框,使用softmax实现离散的回归,将狄拉克分布的积分形式推导到一般形式的积分形式来表示边界框。
狄拉克分布可以认为在一个点概率密度为无穷大,其他点概率密度为0,这是一种极端地认为离散的标签时绝对正确的。
因为标签是一个离散的点,如果把标签认为是绝对正确的目标,那么学习出的就是狄拉克分布,概率密度是一条尖锐的竖线。然而真实场景,物体边界并非是十分明确的,因此学习一个宽范围的分布更为合理。我们需要获得的分布虽然不再像狄拉克分布那么极端(只存在标签值),但也应该在标签值附近。因此学者提出Distribution
Focal
Loss损失函数,目的让网络快速聚焦到标签附近的数值,是标签处的概率密度尽量大。思想是使用交叉熵函数,来优化标签y附近左右两个位置的概率,是网络分布聚焦到标签值附近。如下公式。Si
是网络的sigmod 输出(因为真是是多分类,所以是softmax),yi 和 yi+1 是上图的区间顺序,y是label
值。
具体而言,针对我们将DFL的超参数Reg_max 设置为16的情况下:
A。训练阶段:我们以回归left为例:目标的label 转换为ltrb后,y = ( left - 匹配到的anchor 中心点 x 坐标)/
当前的下采样倍数,假设求得3.2。那么i 就应该为3,yi = 3 ,yi+1 = 4。
B。推理阶段:因为没有label,直接将16个格子进行积分(离散变量为求和,也就是期望)结果就是最终的坐标偏移量(再乘以下采样倍数+
匹配到的anchor的对应坐标)
DFL的实现方式其实就是一个卷积:ultralytics/ultralytics/nn/modules.py at
cc3c774bde86ffce694d202b7383da6cc1721c1b · ultralytics/ultralytics ·
GitHub
NOTE:作者代码中的超参数Reg_max是写死的——16,并且代码内部做了强制截断到16,如果要修改需要修改源码,如果你的输入是640,最大下采样到2020,那么16是够用的,如果输入没有resize或者超过了640一定要自己设置这个Reg_max参数,否则如果目标尺寸还大,将无法拟合到这个偏移量。
比如12801280的图片,目标1280*960,最大下采样32倍,1280/32/2=20 > 16(除以2是因为是一半的偏移量),超过了dfl
滑板右侧那个图的范围。至于为什么叫focal
loss的变体,有兴趣看一下这个https://zhuanlan.zhihu.com/p/357415257和https://zhuanlan.zhihu.com/p/147691786就可以,这里不再赘述是因为,如果先看这些,很容易犯晕,反而抓不住DFL
我认为的重点(离散的分布形式)
class DFL(nn.Module):
# Integral module of Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
def __init__(self, c1=16):
super().__init__()
self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
x = torch.arange(c1, dtype=torch.float)
self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
self.c1 = c1
def forward(self, x):
b, c, a = x.shape # batch, channels, anchors
return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)
# return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)
8.200+种全套改进YOLOV11创新点原理讲解
8.1 200+种全套改进YOLOV11创新点原理讲解大全
由于篇幅限制,每个创新点的具体原理讲解就不全部展开,具体见下列网址中的改进模块对应项目的技术原理博客网址【Blog】(创新点均为模块化搭建,原理适配YOLOv5~YOLOv11等各种版本)
8.2 精选部分改进YOLOV11创新点原理讲解
这里节选部分改进创新点展开原理讲解(完整的改进原理见上图和改进模块技术原理博客链接【如果此小节的图加载失败可以通过CSDN或者Github搜索该博客的标题访问原始博客,原始博客图片显示正常】
RCS-OSA的基本原理
参考该博客,RCSOSA(RCS-One-Shot Aggregation)是RCS-YOLO中提出的一种结构,我们可以将主要原理概括如下:
-
RCS(Reparameterized Convolution based on channel Shuffle): 结合了通道混洗,通过重参数化卷积来增强网络的特征提取能力。
-
RCS模块: 在训练阶段,利用多分支结构学习丰富的特征表示;在推理阶段,通过结构化重参数化简化为单一分支,减少内存消耗。
-
OSA(One-Shot Aggregation): 一次性聚合多个特征级联,减少网络计算负担,提高计算效率。
-
特征级联: RCS-OSA模块通过堆叠RCS,确保特征的复用并加强不同层之间的信息流动。
RCS
RCS(基于通道Shuffle的重参数化卷积)是RCS-YOLO的核心组成部分,旨在训练阶段通过多分支结构学习丰富的特征信息,并在推理阶段通过简化为单分支结构来减少内存消耗,实现快速推理。此外,RCS利用通道分割和通道Shuffle操作来降低计算复杂性,同时保持通道间的信息交换,这样在推理阶段相比普通的3×3卷积可以减少一半的计算复杂度。通过结构重参数化,RCS能够在训练阶段从输入特征中学习深层表示,并在推理阶段实现快速推理,同时减少内存消耗。
RCS模块
RCS(基于通道Shuffle的重参数化卷积)模块中,结构在训练阶段使用多个分支,包括1x1和3x3的卷积,以及一个直接的连接(Identity),用于学习丰富的特征表示。在推理阶段,结构被重参数化成一个单一的3x3卷积,以减少计算复杂性和内存消耗,同时保持训练阶段学到的特征表达能力。这与RCS的设计理念紧密相连,即在不牺牲性能的情况下提高计算效率。
上图为大家展示了RCS的结构,分为训练阶段(a部分)和推理阶段(b部分)。在训练阶段,输入通过通道分割,一部分输入经过RepVGG块,另一部分保持不变。然后通过1x1卷积和3x3卷积处理RepVGG块的输出,与另一部分输入进行通道Shuffle和连接。在推理阶段,原来的多分支结构被简化为一个单一的3x3 RepConv块。这种设计允许在训练时学习复杂特征,在推理时减少计算复杂度。黑色边框的矩形代表特定的模块操作,渐变色的矩形代表张量的特定特征,矩形的宽度代表张量的通道数。
OSA
OSA(One-Shot Aggregation)是一个关键的模块,旨在提高网络在处理密集连接时的效率。OSA模块通过表示具有多个感受野的多样化特征,并在最后的特征映射中仅聚合一次所有特征,从而克服了DenseNet中密集连接的低效率问题。
OSA模块的使用有两个主要目的:
-
提高特征表示的多样性:OSA通过聚合具有不同感受野的特征来增加网络对于不同尺度的敏感性,这有助于提升模型对不同大小目标的检测能力。
-
提高效率:通过在网络的最后一部分只进行一次特征聚合,OSA减少了重复的特征计算和存储需求,从而提高了网络的计算和能源效率。
在RCS-YOLO中,OSA模块被进一步与RCS(基于通道Shuffle的重参数化卷积)相结合,形成RCS-OSA模块。这种结合不仅保持了低成本的内存消耗,而且还实现了语义信息的有效提取,对于构建轻量级和大规模的对象检测器尤为重要。
下面我将为大家展示RCS-OSA(One-Shot Aggregation of RCS)的结构。
在RCS-OSA模块中,输入被分为两部分,一部分直接通过,另一部分通过堆叠的RCS模块进行处理。处理后的特征和直接通过的特征在通道混洗(Channel Shuffle)后合并。这种结构设计用于增强模型的特征提取和利用效率,是RCS-YOLO架构中的一个关键组成部分旨在通过一次性聚合来提高模型处理特征的能力,同时保持计算效率。
特征级联
特征级联(feature cascade)是一种技术,通过在网络的一次性聚合(one-shot aggregate)路径上维持有限数量的特征级联来实现的。在RCS-YOLO中,特别是在RCS-OSA(RCS-Based One-Shot Aggregation)模块中,只保留了三个特征级联。
特征级联的目的是为了减轻网络计算负担并降低内存占用。这种方法可以有效地聚合不同层次的特征,提高模型的语义信息提取能力,同时避免了过度复杂化网络结构所带来的低效率和高资源消耗。
下面为大家提供的图像展示的是RCS-YOLO的整体架构,其中包括RCS-OSA模块。RCS-OSA在模型中用于堆叠RCS模块,以确保特征的复用并加强不同层之间的信息流动。图中显示的多层RCS-OSA模块的排列和组合反映了它们如何一起工作以优化特征传递和提高检测性能。
总结:RCS-YOLO主要由RCS-OSA(蓝色模块)和RepVGG(橙色模块)构成。这里的n代表堆叠RCS模块的数量。n_cls代表检测到的对象中的类别数量。图中的IDetect是从YOLOv11中借鉴过来的,表示使用二维卷积神经网络的检测层。这个架构通过堆叠的RCS模块和RepVGG模块,以及两种类型的检测层,实现了对象检测的任务。
9.系统功能展示
图9.1.系统支持检测结果表格显示
图9.2.系统支持置信度和IOU阈值手动调节
图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)
图9.4.系统支持摄像头实时识别
图9.5.系统支持图片识别
图9.6.系统支持视频识别
图9.7.系统支持识别结果文件自动保存
图9.8.系统支持Excel导出检测结果数据
10. YOLOv11核心改进源码讲解
10.1 hcfnet.py
以下是对代码中最核心部分的分析和详细注释:
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
# 定义空间注意力模块
class SpatialAttentionModule(nn.Module):
def __init__(self):
super(SpatialAttentionModule, self).__init__()
# 使用卷积层来生成空间注意力图
self.conv2d = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=7, stride=1, padding=3)
self.sigmoid = nn.Sigmoid() # 使用Sigmoid激活函数将输出归一化到[0, 1]
def forward(self, x):
# 计算输入特征图的平均值和最大值
avgout = torch.mean(x, dim=1, keepdim=True) # 平均池化
maxout, _ = torch.max(x, dim=1, keepdim=True) # 最大池化
out = torch.cat([avgout, maxout], dim=1) # 拼接平均和最大池化的结果
out = self.sigmoid(self.conv2d(out)) # 通过卷积和Sigmoid生成注意力图
return out * x # 将注意力图应用于输入特征图
# 定义局部-全局注意力模块
class LocalGlobalAttention(nn.Module):
def __init__(self, output_dim, patch_size):
super().__init__()
self.output_dim = output_dim
self.patch_size = patch_size
self.mlp1 = nn.Linear(patch_size * patch_size, output_dim // 2) # 第一层线性变换
self.norm = nn.LayerNorm(output_dim // 2) # 层归一化
self.mlp2 = nn.Linear(output_dim // 2, output_dim) # 第二层线性变换
self.conv = nn.Conv2d(output_dim, output_dim, kernel_size=1) # 1x1卷积
self.prompt = torch.nn.parameter.Parameter(torch.randn(output_dim, requires_grad=True)) # 可学习的提示参数
self.top_down_transform = torch.nn.parameter.Parameter(torch.eye(output_dim), requires_grad=True) # 顶层变换矩阵
def forward(self, x):
x = x.permute(0, 2, 3, 1) # 调整维度顺序
B, H, W, C = x.shape # 获取批量大小、高度、宽度和通道数
P = self.patch_size
# 局部分支
local_patches = x.unfold(1, P, P).unfold(2, P, P) # 提取局部补丁
local_patches = local_patches.reshape(B, -1, P * P, C) # 重塑为(B, H/P*W/P, P*P, C)
local_patches = local_patches.mean(dim=-1) # 对通道维度求平均
local_patches = self.mlp1(local_patches) # 第一层线性变换
local_patches = self.norm(local_patches) # 层归一化
local_patches = self.mlp2(local_patches) # 第二层线性变换
local_attention = F.softmax(local_patches, dim=-1) # 计算局部注意力
local_out = local_patches * local_attention # 应用注意力
# 计算余弦相似度并生成掩码
cos_sim = F.normalize(local_out, dim=-1) @ F.normalize(self.prompt[None, ..., None], dim=1) # 计算余弦相似度
mask = cos_sim.clamp(0, 1) # 限制在[0, 1]范围内
local_out = local_out * mask # 应用掩码
local_out = local_out @ self.top_down_transform # 顶层变换
# 恢复形状
local_out = local_out.reshape(B, H // P, W // P, self.output_dim) # 恢复为(B, H/P, W/P, output_dim)
local_out = local_out.permute(0, 3, 1, 2) # 调整维度顺序
local_out = F.interpolate(local_out, size=(H, W), mode='bilinear', align_corners=False) # 上采样
output = self.conv(local_out) # 通过卷积层生成输出
return output
# 定义PPA模块
class PPA(nn.Module):
def __init__(self, in_features, filters) -> None:
super().__init__()
self.skip = nn.Conv2d(in_features, filters, kernel_size=1) # 跳跃连接
self.c1 = nn.Conv2d(filters, filters, kernel_size=3, padding=1) # 卷积层
self.c2 = nn.Conv2d(filters, filters, kernel_size=3, padding=1) # 卷积层
self.c3 = nn.Conv2d(filters, filters, kernel_size=3, padding=1) # 卷积层
self.sa = SpatialAttentionModule() # 空间注意力模块
self.lga2 = LocalGlobalAttention(filters, 2) # 局部-全局注意力模块
self.lga4 = LocalGlobalAttention(filters, 4) # 局部-全局注意力模块
self.drop = nn.Dropout2d(0.1) # Dropout层
self.bn1 = nn.BatchNorm2d(filters) # 批归一化
self.silu = nn.SiLU() # SiLU激活函数
def forward(self, x):
x_skip = self.skip(x) # 跳跃连接
x_lga2 = self.lga2(x_skip) # 局部-全局注意力
x_lga4 = self.lga4(x_skip) # 局部-全局注意力
x1 = self.c1(x) # 第一层卷积
x2 = self.c2(x1) # 第二层卷积
x3 = self.c3(x2) # 第三层卷积
x = x1 + x2 + x3 + x_skip + x_lga2 + x_lga4 # 融合特征
x = self.sa(x) # 应用空间注意力
x = self.drop(x) # Dropout
x = self.bn1(x) # 批归一化
x = self.silu(x) # 激活
return x
# 定义DASI模块
class DASI(nn.Module):
def __init__(self, in_features, out_features) -> None:
super().__init__()
self.bag = Bag() # Bag模块
self.tail_conv = nn.Conv2d(out_features, out_features, kernel_size=1) # 尾部卷积
self.conv = nn.Conv2d(out_features // 2, out_features // 4, kernel_size=1) # 卷积层
self.bns = nn.BatchNorm2d(out_features) # 批归一化
self.skips = nn.Conv2d(in_features[1], out_features, kernel_size=1) # 跳跃连接
self.skips_2 = nn.Conv2d(in_features[0], out_features, kernel_size=1) # 跳跃连接
self.skips_3 = nn.Conv2d(in_features[2], out_features, kernel_size=3, stride=2, dilation=2, padding=2) # 跳跃连接
self.silu = nn.SiLU() # SiLU激活函数
def forward(self, x_list):
x_low, x, x_high = x_list # 解包输入
x_high = self.skips_3(x_high) if x_high is not None else None # 跳跃连接
x_low = self.skips_2(x_low) if x_low is not None else None # 跳跃连接
x = self.skips(x) # 跳跃连接
x_skip = x # 保存跳跃连接的输出
x = torch.chunk(x, 4, dim=1) # 将x分成4个部分
# 根据高低特征进行融合
if x_high is None:
x0 = self.conv(torch.cat((x[0], x_low[0]), dim=1)) if x_low is not None else x[0]
x1 = self.conv(torch.cat((x[1], x_low[1]), dim=1)) if x_low is not None else x[1]
x2 = self.conv(torch.cat((x[2], x_low[2]), dim=1)) if x_low is not None else x[2]
x3 = self.conv(torch.cat((x[3], x_low[3]), dim=1)) if x_low is not None else x[3]
else:
x0 = self.bag(x_low[0], x_high[0], x[0])
x1 = self.bag(x_low[1], x_high[1], x[1])
x2 = self.bag(x_low[2], x_high[2], x[2])
x3 = self.bag(x_low[3], x_high[3], x[3])
x = torch.cat((x0, x1, x2, x3), dim=1) # 拼接输出
x = self.tail_conv(x) # 尾部卷积
x += x_skip # 加上跳跃连接
x = self.bns(x) # 批归一化
x = self.silu(x) # 激活
return x
代码核心部分说明:
- 空间注意力模块(SpatialAttentionModule):通过平均池化和最大池化生成注意力图,并将其应用于输入特征图,以增强重要特征。
- 局部-全局注意力模块(LocalGlobalAttention):提取局部补丁,经过两层线性变换和注意力计算,结合全局信息,生成增强特征。
- PPA模块:结合多个卷积层、空间注意力和局部-全局注意力模块,融合多种特征,生成最终输出。
- DASI模块:通过跳跃连接和Bag模块融合不同层次的特征,增强特征表达能力。
这些模块通过组合和相互作用,形成了一个强大的特征提取和增强网络结构。
这个程序文件 hcfnet.py
定义了一些用于深度学习的模块,主要是针对图像处理和特征提取的网络结构。代码中使用了 PyTorch 框架,包含了多个神经网络模块的实现。
首先,文件导入了必要的库,包括数学库 math
和 PyTorch 的核心模块 torch
以及神经网络模块 torch.nn
和功能模块 torch.nn.functional
。此外,还导入了一个自定义的卷积模块 Conv
。
接下来,定义了几个类,其中最重要的包括 SpatialAttentionModule
、LocalGlobalAttention
、ECA
、PPA
和 DASI
。
SpatialAttentionModule
是一个空间注意力模块。它的构造函数中定义了一个卷积层和一个 Sigmoid 激活函数。在前向传播中,该模块首先计算输入特征图的平均值和最大值,然后将这两个特征图拼接在一起,经过卷积和 Sigmoid 激活后,得到的输出与输入特征图相乘,增强了重要区域的特征。
LocalGlobalAttention
是一个局部-全局注意力模块。它的构造函数中定义了多个线性层和卷积层。前向传播中,该模块首先将输入数据进行维度变换,然后提取局部补丁并进行处理,计算局部注意力,并与全局特征进行结合,最后通过卷积层输出特征图。
ECA
是一种有效的通道注意力机制。构造函数中根据输入通道数计算卷积核大小,并定义了自适应平均池化和卷积层。在前向传播中,该模块对输入进行池化、变形、卷积和激活,最终输出增强后的特征图。
PPA
是一个组合模块,集成了多个子模块,包括跳跃连接、卷积层、空间注意力模块和 ECA 模块。前向传播中,输入经过不同的卷积层和注意力模块处理,最后将结果相加并经过批归一化和激活函数,输出最终特征图。
Bag
是一个简单的加权融合模块,使用 Sigmoid 函数计算边缘注意力,并将输入特征图进行加权融合。
DASI
是一个深度特征融合模块,接收多个输入特征图并进行处理。它通过跳跃连接和卷积层将不同尺度的特征图进行融合,最后经过尾部卷积和激活函数输出结果。
整体来看,这个文件实现了一些先进的特征提取和融合机制,适用于图像分类、目标检测等任务。每个模块都通过组合不同的注意力机制和卷积操作来增强特征表达能力,提升模型的性能。
10.2 dynamic_snake_conv.py
以下是代码的核心部分,并附上详细的中文注释:
import torch
import torch.nn as nn
class DySnakeConv(nn.Module):
def __init__(self, inc, ouc, k=3) -> None:
super().__init__()
# 初始化三个卷积层
self.conv_0 = Conv(inc, ouc, k) # 标准卷积
self.conv_x = DSConv(inc, ouc, 0, k) # 沿x轴的动态蛇形卷积
self.conv_y = DSConv(inc, ouc, 1, k) # 沿y轴的动态蛇形卷积
def forward(self, x):
# 前向传播,将三个卷积的输出在通道维度上拼接
return torch.cat([self.conv_0(x), self.conv_x(x), self.conv_y(x)], dim=1)
class DSConv(nn.Module):
def __init__(self, in_ch, out_ch, morph, kernel_size=3, if_offset=True, extend_scope=1):
"""
动态蛇形卷积
:param in_ch: 输入通道数
:param out_ch: 输出通道数
:param kernel_size: 卷积核大小
:param extend_scope: 扩展范围(默认1)
:param morph: 卷积核的形态,分为沿x轴(0)和y轴(1)
:param if_offset: 是否需要偏移,False时为标准卷积
"""
super(DSConv, self).__init__()
# 用于学习可变形偏移的卷积层
self.offset_conv = nn.Conv2d(in_ch, 2 * kernel_size, 3, padding=1)
self.bn = nn.BatchNorm2d(2 * kernel_size) # 批归一化
self.kernel_size = kernel_size
# 定义沿x轴和y轴的动态蛇形卷积
self.dsc_conv_x = nn.Conv2d(
in_ch,
out_ch,
kernel_size=(kernel_size, 1),
stride=(kernel_size, 1),
padding=0,
)
self.dsc_conv_y = nn.Conv2d(
in_ch,
out_ch,
kernel_size=(1, kernel_size),
stride=(1, kernel_size),
padding=0,
)
self.gn = nn.GroupNorm(out_ch // 4, out_ch) # 组归一化
self.act = Conv.default_act # 默认激活函数
self.extend_scope = extend_scope
self.morph = morph
self.if_offset = if_offset
def forward(self, f):
# 前向传播
offset = self.offset_conv(f) # 计算偏移
offset = self.bn(offset) # 批归一化
offset = torch.tanh(offset) # 将偏移限制在[-1, 1]之间
input_shape = f.shape
dsc = DSC(input_shape, self.kernel_size, self.extend_scope, self.morph) # 创建DSC对象
deformed_feature = dsc.deform_conv(f, offset, self.if_offset) # 进行可变形卷积
# 根据形态选择对应的卷积
if self.morph == 0:
x = self.dsc_conv_x(deformed_feature.type(f.dtype))
else:
x = self.dsc_conv_y(deformed_feature.type(f.dtype))
x = self.gn(x) # 组归一化
x = self.act(x) # 激活
return x
class DSC(object):
def __init__(self, input_shape, kernel_size, extend_scope, morph):
self.num_points = kernel_size # 卷积核的点数
self.width = input_shape[2] # 输入特征图的宽度
self.height = input_shape[3] # 输入特征图的高度
self.morph = morph # 卷积核形态
self.extend_scope = extend_scope # 偏移范围
# 定义特征图的形状
self.num_batch = input_shape[0] # 批大小
self.num_channels = input_shape[1] # 通道数
def deform_conv(self, input, offset, if_offset):
# 进行可变形卷积
y, x = self._coordinate_map_3D(offset, if_offset) # 计算坐标图
deformed_feature = self._bilinear_interpolate_3D(input, y, x) # 双线性插值
return deformed_feature
def _coordinate_map_3D(self, offset, if_offset):
# 计算3D坐标图
# 省略具体实现,返回y和x坐标
pass
def _bilinear_interpolate_3D(self, input_feature, y, x):
# 进行3D双线性插值
# 省略具体实现,返回插值后的特征图
pass
代码核心部分说明:
- DySnakeConv: 这是一个动态蛇形卷积的模块,包含了标准卷积和两个方向的动态卷积。
- DSConv: 动态蛇形卷积的实现,能够根据输入特征图和偏移量进行卷积操作。
- DSC: 负责计算坐标图和进行双线性插值的类,完成可变形卷积的核心逻辑。
注释说明:
- 代码中的注释详细解释了每个类和方法的功能,以及各个参数的含义,帮助理解动态蛇形卷积的实现过程。
这个程序文件 dynamic_snake_conv.py
实现了一个动态蛇形卷积(Dynamic Snake Convolution)的神经网络模块,主要用于图像处理任务。该模块的核心思想是通过学习可变形的卷积核来增强特征提取能力,尤其是在处理具有复杂形状和结构的图像时。
首先,文件导入了必要的库,包括 PyTorch 和一些自定义的卷积模块。接着定义了 DySnakeConv
类,它是整个动态蛇形卷积的主要接口。这个类的构造函数接受输入通道数 inc
、输出通道数 ouc
和卷积核大小 k
作为参数。构造函数中创建了三个卷积层:conv_0
是标准卷积,conv_x
和 conv_y
是沿 x 轴和 y 轴的动态蛇形卷积。forward
方法将输入 x
通过这三个卷积层处理后,沿通道维度拼接(concat)并返回。
接下来是 DSConv
类,它实现了动态蛇形卷积的具体细节。构造函数中定义了输入和输出通道、卷积核大小、形态参数(morph)、是否使用偏移(if_offset)以及扩展范围(extend_scope)。在构造函数中,首先定义了一个用于学习偏移的卷积层 offset_conv
,然后定义了两个不同方向的卷积层 dsc_conv_x
和 dsc_conv_y
。此外,还使用了批归一化层和激活函数。
DSConv
的 forward
方法接收输入特征图 f
,通过 offset_conv
计算偏移量,并进行批归一化处理。偏移量经过 tanh
函数限制在 -1 到 1 之间。接着,创建一个 DSC
对象,用于生成变形的特征图。根据形态参数的不同,选择不同的卷积层进行处理,并返回结果。
DSC
类负责生成坐标映射和进行双线性插值。它的构造函数接收输入特征图的形状、卷积核大小、扩展范围和形态参数。_coordinate_map_3D
方法根据偏移量生成新的坐标映射,支持两种形态(沿 x 轴或 y 轴)。_bilinear_interpolate_3D
方法实现了双线性插值,用于根据新的坐标映射从输入特征图中提取值。
最后,deform_conv
方法结合坐标映射和插值,返回变形后的特征图。整个模块通过动态调整卷积核的形状,能够更好地适应输入图像的特征,从而提高模型的表现。
总结来说,这个程序实现了一个灵活的卷积操作,通过动态调整卷积核的形状,能够更有效地提取图像中的特征,适用于复杂的图像处理任务。
10.3 convnextv2.py
以下是提取后的核心代码部分,并附上详细的中文注释:
import torch
import torch.nn as nn
import torch.nn.functional as F
class LayerNorm(nn.Module):
""" 实现层归一化(Layer Normalization),支持两种数据格式:channels_last(默认)和 channels_first。 """
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
# 权重和偏置参数
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape, )
def forward(self, x):
# 根据数据格式进行归一化
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True) # 计算均值
s = (x - u).pow(2).mean(1, keepdim=True) # 计算方差
x = (x - u) / torch.sqrt(s + self.eps) # 标准化
x = self.weight[:, None, None] * x + self.bias[:, None, None] # 应用权重和偏置
return x
class Block(nn.Module):
""" ConvNeXtV2的基本模块,包含深度可分离卷积和其他层。 """
def __init__(self, dim, drop_path=0.):
super().__init__()
# 深度可分离卷积
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)
self.norm = LayerNorm(dim, eps=1e-6) # 归一化层
self.pwconv1 = nn.Linear(dim, 4 * dim) # 1x1卷积(使用线性层实现)
self.act = nn.GELU() # 激活函数
self.pwconv2 = nn.Linear(4 * dim, dim) # 另一个1x1卷积
self.drop_path = nn.Identity() if drop_path <= 0. else DropPath(drop_path) # 随机深度
def forward(self, x):
input = x
x = self.dwconv(x) # 深度卷积
x = x.permute(0, 2, 3, 1) # 转换维度顺序
x = self.norm(x) # 归一化
x = self.pwconv1(x) # 第一个1x1卷积
x = self.act(x) # 激活
x = self.pwconv2(x) # 第二个1x1卷积
x = x.permute(0, 3, 1, 2) # 恢复维度顺序
x = input + self.drop_path(x) # 残差连接
return x
class ConvNeXtV2(nn.Module):
""" ConvNeXt V2模型定义。 """
def __init__(self, in_chans=3, num_classes=1000,
depths=[3, 3, 9, 3], dims=[96, 192, 384, 768],
drop_path_rate=0.):
super().__init__()
self.downsample_layers = nn.ModuleList() # 下采样层
# 初始化stem层
stem = nn.Sequential(
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
)
self.downsample_layers.append(stem)
# 添加下采样层
for i in range(3):
downsample_layer = nn.Sequential(
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
)
self.downsample_layers.append(downsample_layer)
self.stages = nn.ModuleList() # 特征分辨率阶段
cur = 0
for i in range(4):
stage = nn.Sequential(
*[Block(dim=dims[i], drop_path=drop_path_rate) for _ in range(depths[i])]
)
self.stages.append(stage)
self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # 最后的归一化层
self.head = nn.Linear(dims[-1], num_classes) # 分类头
def forward(self, x):
for i in range(4):
x = self.downsample_layers[i](x) # 下采样
x = self.stages[i](x) # 特征提取
return x # 返回特征
# 更新模型权重的函数
def update_weight(model_dict, weight_dict):
idx, temp_dict = 0, {}
for k, v in weight_dict.items():
if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
temp_dict[k] = v
idx += 1
model_dict.update(temp_dict)
return model_dict
# 定义不同规模的ConvNeXtV2模型的构造函数
def convnextv2_tiny(weights='', **kwargs):
model = ConvNeXtV2(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
if weights:
model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))
return model
代码说明:
- LayerNorm: 实现了层归一化,可以处理不同的输入格式。
- Block: 定义了ConvNeXtV2的基本构建块,包含深度卷积、归一化、激活函数和残差连接。
- ConvNeXtV2: 整个模型的结构,包括下采样层和多个特征提取阶段。
- update_weight: 用于更新模型权重的辅助函数。
- convnextv2_tiny: 定义了一个具体规模的ConvNeXtV2模型构造函数,并支持加载预训练权重。
这个程序文件实现了ConvNeXt V2模型的结构,主要用于图像分类任务。首先,文件引入了必要的库,包括PyTorch和一些用于模型构建的工具。接着,定义了一些基本的模块,如LayerNorm、GRN(全局响应归一化)和Block(ConvNeXt V2的基本构建块)。
LayerNorm类实现了层归一化功能,支持两种数据格式:channels_last和channels_first。它的构造函数接受归一化的形状、一个小的常数以避免除零错误以及数据格式。forward方法根据输入的数据格式应用相应的归一化操作。
GRN类实现了全局响应归一化层,它通过计算输入的L2范数并进行归一化来调整输入的响应,增加了模型的表达能力。
Block类是ConvNeXt V2的核心模块,包含了深度可分离卷积、层归一化、点卷积、激活函数(GELU)和GRN。它通过残差连接和随机深度(drop path)机制来增强模型的学习能力。
ConvNeXtV2类则是整个模型的定义。它的构造函数接受输入通道数、分类头的类别数、每个阶段的块数、特征维度、随机深度率和分类器权重的初始化缩放值。模型的结构包括一个stem层和多个下采样层,以及多个特征分辨率阶段,每个阶段由多个Block组成。最后,模型通过一个线性层输出分类结果。
文件中还定义了一个辅助函数update_weight,用于更新模型的权重。它会检查权重字典中的每个键是否存在于模型字典中,并且形状是否匹配,匹配的权重会被更新。
最后,文件提供了多个函数(如convnextv2_atto、convnextv2_femto等),这些函数用于创建不同规模的ConvNeXt V2模型。每个函数都可以选择性地加载预训练权重,以便在特定任务上进行微调。
整体来看,这个文件实现了一个灵活且高效的图像分类模型,支持多种配置和预训练权重的加载,适合在各种计算机视觉任务中使用。
10.4 RFAConv.py
以下是代码中最核心的部分,并附上详细的中文注释:
import torch
import torch.nn as nn
from einops import rearrange
class RFAConv(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, stride=1):
super().__init__()
self.kernel_size = kernel_size
# 权重生成模块
self.get_weight = nn.Sequential(
nn.AvgPool2d(kernel_size=kernel_size, padding=kernel_size // 2, stride=stride),
nn.Conv2d(in_channel, in_channel * (kernel_size ** 2), kernel_size=1, groups=in_channel, bias=False)
)
# 特征生成模块
self.generate_feature = nn.Sequential(
nn.Conv2d(in_channel, in_channel * (kernel_size ** 2), kernel_size=kernel_size, padding=kernel_size // 2, stride=stride, groups=in_channel, bias=False),
nn.BatchNorm2d(in_channel * (kernel_size ** 2)),
nn.ReLU()
)
# 最终卷积层
self.conv = nn.Conv2d(in_channel, out_channel, kernel_size=kernel_size, stride=kernel_size)
def forward(self, x):
b, c = x.shape[0:2] # 获取输入的批次大小和通道数
weight = self.get_weight(x) # 生成权重
h, w = weight.shape[2:] # 获取特征图的高和宽
# 对权重进行softmax归一化
weighted = weight.view(b, c, self.kernel_size ** 2, h, w).softmax(2) # b c*kernel**2, h, w
# 生成特征
feature = self.generate_feature(x).view(b, c, self.kernel_size ** 2, h, w) # b c*kernel**2, h, w
# 加权特征
weighted_data = feature * weighted
# 重排特征数据以适应卷积层输入
conv_data = rearrange(weighted_data, 'b c (n1 n2) h w -> b c (h n1) (w n2)', n1=self.kernel_size, n2=self.kernel_size)
return self.conv(conv_data) # 返回卷积结果
class SE(nn.Module):
def __init__(self, in_channel, ratio=16):
super(SE, self).__init__()
self.gap = nn.AdaptiveAvgPool2d((1, 1)) # 全局平均池化
self.fc = nn.Sequential(
nn.Linear(in_channel, ratio, bias=False), # 从 c -> c/r
nn.ReLU(),
nn.Linear(ratio, in_channel, bias=False), # 从 c/r -> c
nn.Sigmoid()
)
def forward(self, x):
b, c = x.shape[0:2] # 获取输入的批次大小和通道数
y = self.gap(x).view(b, c) # 全局平均池化并展平
y = self.fc(y).view(b, c, 1, 1) # 通过全连接层并调整形状
return y # 返回通道注意力权重
class RFCBAMConv(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size=3, stride=1):
super().__init__()
self.kernel_size = kernel_size
# 特征生成模块
self.generate = nn.Sequential(
nn.Conv2d(in_channel, in_channel * (kernel_size ** 2), kernel_size, padding=kernel_size // 2, stride=stride, groups=in_channel, bias=False),
nn.BatchNorm2d(in_channel * (kernel_size ** 2)),
nn.ReLU()
)
# 权重生成模块
self.get_weight = nn.Sequential(nn.Conv2d(2, 1, kernel_size=3, padding=1, bias=False), nn.Sigmoid())
self.se = SE(in_channel) # 通道注意力模块
# 最终卷积层
self.conv = nn.Conv2d(in_channel, out_channel, kernel_size=kernel_size, stride=kernel_size)
def forward(self, x):
b, c = x.shape[0:2] # 获取输入的批次大小和通道数
channel_attention = self.se(x) # 计算通道注意力
generate_feature = self.generate(x) # 生成特征
h, w = generate_feature.shape[2:] # 获取特征图的高和宽
generate_feature = generate_feature.view(b, c, self.kernel_size ** 2, h, w) # 重塑特征图
# 重排特征数据以适应卷积层输入
generate_feature = rearrange(generate_feature, 'b c (n1 n2) h w -> b c (h n1) (w n2)', n1=self.kernel_size, n2=self.kernel_size)
# 计算加权特征
unfold_feature = generate_feature * channel_attention
# 计算最大值和均值特征
max_feature, _ = torch.max(generate_feature, dim=1, keepdim=True)
mean_feature = torch.mean(generate_feature, dim=1, keepdim=True)
# 计算感受野注意力
receptive_field_attention = self.get_weight(torch.cat((max_feature, mean_feature), dim=1))
# 返回卷积结果
return self.conv(unfold_feature * receptive_field_attention)
class RFCAConv(nn.Module):
def __init__(self, inp, oup, kernel_size, stride=1, reduction=32):
super(RFCAConv, self).__init__()
self.kernel_size = kernel_size
# 特征生成模块
self.generate = nn.Sequential(
nn.Conv2d(inp, inp * (kernel_size ** 2), kernel_size, padding=kernel_size // 2, stride=stride, groups=inp, bias=False),
nn.BatchNorm2d(inp * (kernel_size ** 2)),
nn.ReLU()
)
# 自适应池化
self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
self.pool_w = nn.AdaptiveAvgPool2d((1, None))
mip = max(8, inp // reduction) # 计算中间通道数
# 通道压缩模块
self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(mip)
self.act = nn.ReLU() # 激活函数
# 通道恢复模块
self.conv_h = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0)
self.conv_w = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0)
# 最终卷积层
self.conv = nn.Conv2d(inp, oup, kernel_size, stride=kernel_size)
def forward(self, x):
b, c = x.shape[0:2] # 获取输入的批次大小和通道数
generate_feature = self.generate(x) # 生成特征
h, w = generate_feature.shape[2:] # 获取特征图的高和宽
generate_feature = generate_feature.view(b, c, self.kernel_size ** 2, h, w) # 重塑特征图
# 重排特征数据以适应卷积层输入
generate_feature = rearrange(generate_feature, 'b c (n1 n2) h w -> b c (h n1) (w n2)', n1=self.kernel_size, n2=self.kernel_size)
# 计算高和宽的池化
x_h = self.pool_h(generate_feature)
x_w = self.pool_w(generate_feature).permute(0, 1, 3, 2)
# 拼接池化结果
y = torch.cat([x_h, x_w], dim=2)
y = self.conv1(y) # 通过1x1卷积
y = self.bn1(y) # 批归一化
y = self.act(y) # 激活
h, w = generate_feature.shape[2:] # 获取特征图的高和宽
x_h, x_w = torch.split(y, [h, w], dim=2) # 分割高和宽的特征
x_w = x_w.permute(0, 1, 3, 2) # 转置
# 计算通道注意力
a_h = self.conv_h(x_h).sigmoid()
a_w = self.conv_w(x_w).sigmoid()
return self.conv(generate_feature * a_w * a_h) # 返回卷积结果
代码核心部分解释:
-
RFAConv: 该模块通过生成特征和权重,利用加权特征进行卷积操作。它使用了平均池化和卷积来生成权重,并通过softmax进行归一化。
-
SE (Squeeze-and-Excitation): 该模块通过全局平均池化和全连接层生成通道注意力权重,增强重要特征。
-
RFCBAMConv: 结合了RFAConv和SE模块,利用通道注意力和感受野注意力来提升特征表达能力。
-
RFCAConv: 该模块通过生成特征并计算高宽池化结果,结合通道注意力来进行特征增强,最终通过卷积层输出结果。
这些模块在卷积神经网络中可以用于特征提取和增强,提高模型的表现能力。
这个程序文件RFAConv.py
实现了一些卷积神经网络模块,主要包括RFAConv
、RFCBAMConv
和RFCAConv
,这些模块结合了不同的特征生成和注意力机制,以提高卷积操作的表现。
首先,文件中导入了必要的库,包括torch
和torch.nn
,以及einops
库用于张量重排。还导入了一些自定义的卷积模块,如Conv
、DWConv
、RepConv
和autopad
。
接下来,定义了两个激活函数模块:h_sigmoid
和h_swish
。h_sigmoid
实现了一个高斯Sigmoid激活函数,h_swish
则是一个Swish激活函数,它结合了Sigmoid和输入值。
RFAConv
类是一个自定义的卷积模块,构造函数中定义了特征生成和权重获取的子模块。特征生成使用了深度可分离卷积和批归一化,获取权重则使用了平均池化和卷积操作。前向传播中,首先计算输入特征的权重,然后生成特征并与权重相乘,最后通过卷积层输出结果。
SE
类实现了Squeeze-and-Excitation(SE)模块,用于通道注意力机制。它通过全局平均池化和全连接层生成通道权重,增强重要特征。
RFCBAMConv
类结合了特征生成和通道注意力机制,首先生成特征,然后通过SE模块计算通道注意力,接着生成特征的最大值和均值,用于计算接收场注意力,最后通过卷积层输出结果。
RFCAConv
类则实现了一种结合空间注意力和通道注意力的卷积模块。它生成特征后,通过自适应平均池化分别计算高和宽方向的特征,合并后通过卷积层生成注意力权重,最后将这些权重应用于生成的特征上,经过卷积层输出最终结果。
整体来看,这个文件实现了一些先进的卷积模块,利用注意力机制和特征重排技术来提升卷积神经网络的性能,适用于图像处理和计算机视觉任务。
注意:由于此博客编辑较早,上面“10.YOLOv11核心改进源码讲解”中部分代码可能会优化升级,仅供参考学习,以“11.完整训练+Web前端界面+200+种全套创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。
11.完整训练+Web前端界面+200+种全套创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)
参考原始博客1: https://gitee.com/Vision-Studios/canned-food-surface-defect34
参考原始博客2: https://github.com/Qunmasj-Vision-Studio/canned-food-surface-defect34