boosting算法整理

本文详细介绍了Boosting算法中的Adaboost、GBDT和XGBoost。Adaboost通过调整样本权重,训练弱分类器构成强分类器,易受噪声干扰。GBDT要求弱学习器为CART模型,优化样本损失。XGBoost在GBDT基础上进行了优化,引入正则项防止过拟合,并支持多种基分类器和数据采样。
摘要由CSDN通过智能技术生成

Adaboost

AdaBoost是英文"Adaptive Boosting"(自适应增强)的缩写。它的自适应在于:前一个基本分类器被错误分类的样本的权值会增大,而正确分类的样本的权值会减小,并再次用来训练下一个基本分类器。同时,在每一轮迭代中,加入一个新的弱分类器,直到达到某个预定的足够小的错误率或达到预先指定的最大迭代次数才确定最终的强分类器。
算法流程:

  1. 初始化训练数据的权值分布 D 1 D_1 D1。假设有 N N
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值