原因:存在一些样本 label 为 y_true
,但是你的 y_pred
并没有预测到。
比如
y_true = (0, 1, 2, 3, 4)
y_pred = (0, 1, 1, 3, 4)
label‘2’ 从来没有被预测到,所以F-score没有计算这项 label, 因此这种情况下 F-score 就被当作为 0.0 了。
但是又因为,要计算所有分类结果的平均得分就必须将这项得分为 0 的情况考虑进去,所以,scikit-learn出来提醒你,warning警告一下。
warning
,跟 error
不同,你可能在一次程序运行当中看到同一条 warning
多次,但在大部分环境当中它只出现一次。你也可以通过修改一些行为来改变情况:
import warnings
warnings.filterw