在机器学习中,几乎到处都可以见到exponential family的影子。从伯努利分布,高斯分布,logistic回归,最大熵,都与exponential family息息相关。找了很久的资料,后来发现来自【1】中的讲解最好最清楚。本文是对其的摘录和理解。
exponential family定义
其中pdf指probability density function, pmf指probability mass function,都当做概率密度函数就好的,不影响理解。
其中θ叫做自然变量(natural parameters),Φ(x)叫做充分统计量,Z(θ)是归一化因子。
这个公式看起来很玄,为什么会出现以e为底的指数形式呢?我的理解是e可以把乘法运算变成加法运算。
有以下重要性质
1. 伯努利分布,高斯分布,均匀分布,gamma分布,t分布都可以转化为exponential family的形式。
2. 在一定条件下,exponential family是唯一具有充分统计量的分布家族。(一定条件指的是the support of the distribution not be dependent on the parameter,比较抽象,详细请见【1】)
3. exponential family 是唯一具有共轭先验的分布。
4. exponential family是在给定限

指数族分布在机器学习中扮演关键角色,包括伯努利、高斯和逻辑回归等常见模型。其定义涉及自然参数、充分统计量和归一化因子。指数族分布具有唯一充分统计量、共轭先验、最小假设和通用线性模型等特点,是最大熵模型和变分推断的基础。
最低0.47元/天 解锁文章
293

被折叠的 条评论
为什么被折叠?



