
目标检测(理论)
文章平均质量分 91
针对目标检测理论性文章介绍
浩瀚之水_csdn
路漫漫其修远兮,吾将上下而求索,立刻行动,坚持,努立
展开
-
logit, logistic和sigmoid的区别
三者的核心差异在于数学定义和应用场景,但通过Logit-Logistic的互逆关系和Sigmoid的包容性,共同支撑了概率建模与深度学习的底层逻辑。原创 2025-05-23 03:38:39 · 323 阅读 · 0 评论 -
二元交叉熵损失为何与 logits 结合使用
在二元分类任务中,二元交叉熵损失(Binary Cross-Entropy Loss, BCE)与 logits 结合使用(如PyTorch的BCEWithLogitsLoss)是一种常见且高效的设计。这种设计背后有多个关键原因,涵盖数值稳定性、计算效率和梯度优化等方面。原创 2025-05-23 03:38:21 · 516 阅读 · 0 评论 -
Focal Loss 和二元交叉熵损失(BCE)损失函数对比
Focal Loss 和二元交叉熵损失(BCE)都是用于二分类或多标签分类任务的损失函数,但它们在解决类别不平衡、难易样本优化等方面有显著差异。原创 2025-05-22 14:41:22 · 38 阅读 · 0 评论 -
标签缺失概念解析
在机器学习任务中,标签缺失(Missing Labels)是常见的数据挑战,尤其在多标签分类、目标检测或半监督学习场景中。原创 2025-05-22 14:35:15 · 97 阅读 · 0 评论 -
二分类、单标签多分类及多标签分类概念区别
在机器学习和深度学习中,分类任务根据样本与标签的关联方式可分为三种主要类型:单标签多分类、多标签分类和二分类,分别从它们的核心区别、数学原理、应用场景及实现细节的详细对比。原创 2025-05-22 14:30:54 · 24 阅读 · 0 评论 -
NMS(非极大值抑制)在NumPy、PyTorch和C++中的实现方法
非极大值抑制(NMS)是一种用于目标检测任务中过滤重叠框的算法。本文介绍了NMS在NumPy、PyTorch和C++中的实现方法。NumPy实现适合无GPU环境下的原型开发,代码简洁但效率较低。PyTorch实现支持GPU加速,适用于深度学习模型集成,且在多类别NMS中通过类别偏移避免跨类别抑制。C++实现包括依赖OpenCV的版本和无依赖的纯C++版本,分别适合嵌入式或高性能场景以及资源受限环境。选择实现方式时需考虑适用场景、性能和依赖等因素,同时注意IoU阈值的选择和多类别处理。原创 2022-05-12 15:28:26 · 873 阅读 · 0 评论 -
【YOLO】标准NMS(Non-Maximum Suppression)详解
非极大值抑制(NMS) 是目标检测中用于消除冗余检测框的后处理算法,其核心目的是在多个重叠的候选框中保留对同一目标的最佳预测结果,同时剔除其他低质量的重复框。原创 2025-05-18 08:47:33 · 55 阅读 · 0 评论 -
【YOLO】深度学习中的置信度概念详解
在深度学习中,置信度(Confidence) 是模型对自身预测结果确定性程度的量化表达。与传统统计学中的置信区间不同,深度学习置信度直接关联模型输出的概率分布,是模型自我评估的“可信度标尺”。原创 2025-05-18 08:43:30 · 114 阅读 · 0 评论 -
【YOLO】NCHW与NHWC格式区别
在深度学习中,NCHW(Batch-Channel-Height-Width)和NHWC(Batch-Height-Width-Channel)是两种主要的数据排布格式,它们对模型的计算效率、内存占用和硬件适配性有显著影响。NCHW格式以通道优先,适合GPU上的并行计算,尤其在卷积运算中表现优异;而NHWC格式以空间优先,更适合CPU的缓存优化,减少内存访问延迟。不同深度学习框架对这两种格式的支持各异,如PyTorch和Caffe默认使用NCHW,TensorFlow则倾向于NHWC。原创 2025-05-17 11:10:19 · 114 阅读 · 0 评论 -
【YOLO】目标检测中NMS综述
NMS及其变体的核心目标是在保证检测精度的同时消除冗余框。选择方法需权衡场景特点(如目标密度、遮挡程度)和计算效率。随着目标检测技术的发展,NMS的改进仍是一个活跃的研究领域。原创 2025-05-16 15:08:57 · 106 阅读 · 0 评论 -
【YOLO】YOLOv12 损失函数解析
YOLOv12 作为 YOLO 系列的最新迭代,通过 动态标签分配、多任务协同优化 和 几何建模增强 等关键技术,进一步提升了目标检测的精度与鲁棒性。其损失函数在继承 YOLO 系列经典设计的基础上,引入了多项创新性改进,原创 2025-05-15 08:33:56 · 588 阅读 · 0 评论 -
【YOLO】YOLOv5选择BCE而非CE作为分类损失的解析
YOLOv5采用二元交叉熵损失,是目标检测任务特性(多标签、类别独立、背景主导)与工程实践(效率、稳定性、可扩展性)的最优权衡。这一设计使其在复杂场景中保持高精度与高效率,成为工业级目标检测的首选原创 2025-05-15 05:42:10 · 185 阅读 · 0 评论 -
【YOLO】二元交叉熵(BCE)和交叉熵(CE)的对比
二元交叉熵(BCE)与交叉熵(CE)的对比分析,涵盖定义、数学形式、应用场景及实践差异原创 2025-05-13 08:09:11 · 47 阅读 · 0 评论 -
【YOLO】单标签多分类、多标签分类及二分类概念区分
在机器学习和深度学习中,分类任务根据样本与标签的关联方式可分为三种主要类型:二分类、单标签多分类和多标签分类。二分类适用于预测样本属于两个互斥类别中的一个,如垃圾邮件检测,使用Sigmoid函数和二元交叉熵损失。单标签多分类用于预测样本属于多个互斥类别中的一个,如图像分类,使用Softmax函数和交叉熵损失。多标签分类则用于预测样本可能属于多个非互斥类别,如医学影像诊断,使用Sigmoid函数和二元交叉熵扩展损失。原创 2025-05-13 08:08:47 · 56 阅读 · 0 评论 -
二元交叉熵损失详解
二元交叉熵损失(BinaryCross-EntropyLoss)是二分类任务中常用的损失函数,用于衡量模型预测概率分布与真实标签之间的差异。其数学表达式基于真实标签和模型预测概率,通过平均所有样本的损失来计算总损失。原创 2025-05-12 09:19:24 · 300 阅读 · 0 评论 -
【YOLO】解析train2017.cache
YOLOv5中的train2017.cache文件是训练过程中自动生成的标签缓存文件,主要用于加速数据加载并确保数据一致性。该文件存储了预处理后的标签数据(如边界框坐标、类别ID)、图像原始尺寸及数据统计信息,避免了重复解析原始标签文件。缓存文件采用字典结构的二进制格式保存,包含版本号、哈希值、标签数组、图像尺寸等字段。原创 2025-05-12 09:03:33 · 31 阅读 · 0 评论 -
【YOLO】标签缓存机制详解
通过标签缓存机制,YOLOv5 在保证数据一致性的前提下,显著提升了数据加载效率,尤其适用于大规模或高频次训练场景。用户需理解其原理,合理管理缓存文件以发挥最大效用。原创 2025-05-10 15:35:04 · 159 阅读 · 0 评论 -
IOU(Intersection over Union)发展综述
IOU的演进史是目标检测领域追求更高精度、更强鲁棒性的缩影。从几何约束到概率建模,从静态计算到动态适应,其发展始终围绕“如何更全面地描述目标匹配”这一核心问题展开。未来,随着多模态学习、自适应优化等技术的融合,IOU衍生方法将继续推动检测模型在复杂场景中的性能边界。原创 2025-05-10 10:28:28 · 253 阅读 · 0 评论 -
【YOLO】训练集标注工具选择指南
针对不同需求的 YOLO训练集标注工具选择指南,结合功能特性、适用场景和实战经验,提供从基础到进阶的完整解决方案原创 2025-05-06 16:57:53 · 55 阅读 · 0 评论 -
[YOLO] 关于金字塔池化层输出维度的数学解释
关于金字塔池化层输出维度的数学解释原创 2025-05-06 14:34:30 · 129 阅读 · 0 评论 -
【YOLO】RoI Pooling 与 SPP 的核心区别详解
RoI Pooling(Region of Interest Pooling)和 SPP(Spatial Pyramid Pooling)都是用于处理不同尺寸输入的关键模块,但设计目标、应用场景和实现方式存在显著差异。原创 2025-05-06 14:20:07 · 103 阅读 · 0 评论 -
【YOLO】YOLO系列动态IoU匹配发展综述
YOLO系列在动态IoU匹配上的演进,体现了从规则驱动到数据驱动、从单一任务到多模态融合的技术跃迁。未来,结合Transformer与量子计算,动态IoU匹配将突破传统视觉任务边界,成为通用AI感知系统的核心模块。原创 2025-04-24 14:20:56 · 126 阅读 · 0 评论 -
【YOLO】YOLO系列的动态Anchor-Free演进
YOLO系列的动态Anchor-Free设计经历了从初代探索到现代智能化的螺旋式演进,其核心思想围绕减少人工先验干预与提升模型自适应性展开。原创 2025-04-24 11:14:27 · 136 阅读 · 0 评论 -
【YOLO】YOLOv1 动态IoU匹配机制详解
YOLOv1的动态IoU匹配(Dynamic IoU Matching)是其正负样本分配的核心机制,旨在不依赖预定义锚框(Anchor-Free)的情况下,通过实时计算预测框与真实框的交并比(IoU),灵活选择每个目标的对应正样本。原创 2025-04-24 10:37:22 · 67 阅读 · 0 评论 -
【YOLO】YOLOv1的动态Anchor-Free设计详解
YOLOv1的动态Anchor-Free设计是其区别于传统目标检测模型(如Faster R-CNN、SSD)的核心创新之一。它摒弃了预定义锚框(Anchor Box)的依赖,直接通过网格划分与动态IoU匹配实现目标定位。原创 2025-04-24 10:31:12 · 68 阅读 · 0 评论 -
【YOLO】数据增强方法作用及解决问题详解
YOLO系列通过多样化的数据增强技术提升模型鲁棒性和检测精度。原创 2025-04-23 22:24:45 · 567 阅读 · 0 评论 -
【YOLO】YOLO系列数据增强方法综述
YOLO系列通过不断优化数据增强策略,在速度与精度之间取得平衡。开发者应根据任务需求灵活选择增强组合,重点关注小目标增强与遮挡鲁棒性设计,以实现工业级检测性能。原创 2025-04-23 17:15:46 · 567 阅读 · 0 评论 -
【YOLO】超参high、med及low的区别及应用场景
在YOLO系列目标检测框架(如YOLOv5/YOLOv8)中,hyp.scratch-high.yaml、hyp.scratch-med.yaml、hyp.scratch-low.yaml 是三种不同激进程度的超参数配置文件,主要区别在于学习率、正则化强度和数据增强等核心参数的设置。原创 2025-04-23 17:13:46 · 155 阅读 · 0 评论 -
YOLOV5各版本在数据增强上区别
通过版本迭代,YOLOv5的数据增强从基础几何变换发展到自动化、多阶段联合增强,显著提升了模型在复杂场景下的鲁棒性。建议根据任务需求选择版本,并优先使用 v7.0 以获取最佳性能。原创 2025-03-21 15:45:47 · 56 阅读 · 0 评论 -
【YOLO】YOLOV5 ONNX导出模式下检测头输出解析
YOLOv5的ONNX导出模式通过多尺度预测合并与坐标预解码设计,实现了从模型输出到NMS后处理的无缝衔接。其技术亮点包括动态网格生成、部署友好性优化及跨框架兼容性,为工业级目标检测部署提供了高效解决方案原创 2025-04-15 11:23:00 · 457 阅读 · 0 评论 -
【YOLO】YOLOV5常规推理模式下检测头输出解析
YOLOv5的常规推理模式输出(torch.cat(z, 1), x)是一个兼顾效率与可解释性的设计,允许用户同时获取可直接用于后处理的预测结果和原始特征图。原创 2025-04-15 11:11:48 · 55 阅读 · 0 评论 -
【YOLO】YOLOv5训练模式下检测头输出解析
在YOLOv5的训练模式中,检测头的输出被设计为保留多尺度预测的原始特征图,以便与真实标签(Ground Truth)进行精确匹配,从而计算分类、回归和置信度损失。原创 2025-04-15 10:57:26 · 93 阅读 · 0 评论 -
【YOLO】YOLO系列区域生成方式全解析
YOLO系列的区域生成方式经历了从固定网格划分到动态化、多尺度化、无锚点化的演进,最终发展为结合注意力机制与全局建模的智能检测框架。原创 2025-04-14 16:33:37 · 333 阅读 · 0 评论 -
【YOLO】YOLO系列减少背景误检的核心技术演进
YOLO系列通过不断优化网络架构、损失函数、特征融合及训练策略,逐步提升对背景误检的抑制能力。原创 2025-04-14 16:03:20 · 275 阅读 · 0 评论 -
【YOLO】YOLO系列网格划分机制详解
YOLO的网格划分机制通过结构化责任分配、归一化坐标表示与多尺度优化,实现了高效、精准的目标检测。从YOLOv1的固定网格到后续版本的动态锚框与多尺度融合,该机制不断演进,平衡了速度与精度需求。理解网格划分原理是掌握YOLO算法核心思想的关键原创 2025-04-14 16:00:22 · 359 阅读 · 0 评论 -
【目标检测】全局上下文感知的详解
目标检测中的全局上下文感知(Global Context Awareness)是指模型在定位和识别目标时,能够有效利用图像中全局或大范围的上下文信息(如场景语义、目标间关系、空间布局等),而不仅仅依赖局部特征。这种能力显著提升了检测的鲁棒性,尤其是在复杂场景(如遮挡、小目标、密集目标)中表现突出。原创 2025-04-13 21:11:38 · 142 阅读 · 0 评论 -
【目标检测】目标检测技术发展的综述
目标检测经历了从人工特征到深度学习、从两阶段到一阶段再到Transformer的演进,逐步趋向高效、精准和通用化。未来将更注重算法在实际场景中的鲁棒性和可解释性,同时与跨模态技术结合,推动AI在复杂环境中的全面应用。原创 2025-04-13 21:05:42 · 127 阅读 · 0 评论 -
【YOLO】YOLOv5检测头(Detect/Segment)前向传播函数的解析
处理来自Backbone的多尺度特征图,生成检测框(Detect)或检测框+分割(Segment),并适配训练/推理/导出等场景的差异化输出。原创 2025-04-11 15:04:50 · 221 阅读 · 0 评论 -
YOLO中的置信度(Confidence)概念
YOLO中的置信度(Confidence)是衡量预测边界框(Bounding Box)是否包含目标以及定位准确性的关键指标。原创 2025-03-27 08:49:38 · 1399 阅读 · 0 评论 -
深入浅出之Focal Loss、VFL与DFL
一、提出背景Focal Loss的提出主要是为了解决在目标检测等任务中常见的类别不平衡问题,特别是在正负样本比例极不均衡的情况下,模型往往会被大量简单样本(如背景)所主导,导致对少数类样本(如目标物体)的学习不足。此外,传统的损失函数(如交叉熵损失)在处理难易样本时也存在一定的问题,即模型容易对简单样本过度拟合,而忽视难分类样本的学习。二、时间与作者。原创 2024-09-24 13:57:15 · 6412 阅读 · 0 评论