Beta多样性分析:一句代码搞定CCA、DCA、DPCoA、MDS、NMDS、PCoA、RDA

本文介绍了如何利用R语言的phyloseq包进行beta多样性的七种分析方法,包括Bray-Curtis和Unweighted-UniFrac距离的DCA、CCA、RDA、DPCoA、NMDS、MDS和PCoA。通过示例代码展示了如何构建数据对象、执行距离计算和ordination,并用ggplot2进行可视化,帮助用户理解不同方法在微生物组学分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 数据分析服务请访问以下链接:

文章发表技术服务,数据分析服务

数据和代码获取:请查看主页个人信息

大家好,今天我将介绍如何使用R语言phyloseq包进行常见的beta多样性分析,并使用ggplot2包进行绘图展示。

相信大家在分析的过程中会遇到一个头疼的点:距离计算方法和beta多样性指数计算方法那么多,我该怎么计算?或者说用哪种指数进行分析后,样本区分度可以达到我的需求?

首先来看下chatGPT对于这七种多样性指数的解释:

  1. CCA (Canonical Correspondence Analysis):CCA是一种用于分析响应变量(通常是物种丰度数据)与解释变量(例如环境变量)之间关系的多变量技术。它旨在识别最大化响应变量与解释变量之间相关性的线性组合。

  2. DCA (Detrended Correspondence Analysis):DCA是一种用于排序和可视化生态数据的方法。通常应用于物种丰度数据,以探索样本或群落之间的差异。DCA试图展现数据中的梯度信息,并且可以显示数据中的非线性关系。

  3. DPCoA (Double Principal Coordinate Analysis):DPCoA是一种多元数据分析方法,类似于PCoA&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值