视频 11 函数极限的性质和极限的运算
一、极限值与函数值的关系
1、(极限值的唯一性)如果limf(x) x->x0\x->∞ , 存在, 则他的极限值是唯一的。
证明: 反证法
2、极限值与函数值的同号性
(1)设limf(x) = A(x->x0) ,且A>0,(或A<0)
则比存在N(x0) 空心邻域, 都有f(x) > 0 (或 f(x) <0 )
证明:
(2)设limf(x)=A,且在N(x0)空心邻域内有f(x) >= 0,则A>=0
证明:
例1 设f(x)在x0点的某邻域内N(x0)内有定义,且limf(x)-f(x0)/(x-x0)^2=-1 (X->x0)
则比存在某邻域N(x0,δ)
f(x)与f(x0) 关系
f(x) < f(x0)
3. (有界性) 如果当x->x0(x->∞)时, limf(x) -> A (常数),则一定存在x0的某个空心邻域,N(^x0) (或存在N>0,|x|>N) f(x) 是有界的
证明:
习题2-2 4 5(2)(4)(6),8(1)
二、函数的极限与无穷小的关系
设limf(x) = A (x->x0 \ x - > ∞),f(x)、A之间有什么关系?
一、极限值与函数值的关系
1、(极限值的唯一性)如果limf(x) x->x0\x->∞ , 存在, 则他的极限值是唯一的。
证明: 反证法
2、极限值与函数值的同号性
(1)设limf(x) = A(x->x0) ,且A>0,(或A<0)
则比存在N(x0) 空心邻域, 都有f(x) > 0 (或 f(x) <0 )
证明:
(2)设limf(x)=A,且在N(x0)空心邻域内有f(x) >= 0,则A>=0
证明:
例1 设f(x)在x0点的某邻域内N(x0)内有定义,且limf(x)-f(x0)/(x-x0)^2=-1 (X->x0)
则比存在某邻域N(x0,δ)
f(x)与f(x0) 关系
f(x) < f(x0)
3. (有界性) 如果当x->x0(x->∞)时, limf(x) -> A (常数),则一定存在x0的某个空心邻域,N(^x0) (或存在N>0,|x|>N) f(x) 是有界的
证明:
习题2-2 4 5(2)(4)(6),8(1)
二、函数的极限与无穷小的关系
设limf(x) = A (x->x0 \ x - > ∞),f(x)、A之间有什么关系?