Sklearn 决策树

sklearn的基本建模流程实例化:建立评估模型对象通过模型接口训练模型通过模型接口提取需要的信息1. 决策树重要概念:根节点:没有进边,有出边。包含最初的,针对特征的提问中间节点:既有进边也有出边,进边只有一条,出边可以有很多条。都是针对特征的提问。叶子节点:有进边,没有出边,每个叶子节点都是一个类别标签。子节点和父节点:在两个相连的节点中,更接近根节点的是父节点,另一...
摘要由CSDN通过智能技术生成


sklearn的基本建模流程

  1. 实例化:建立评估模型对象
  2. 通过模型接口训练模型
  3. 通过模型接口提取需要的信息

1. 决策树

在这里插入图片描述
重要概念:

  1. 根节点:没有进边,有出边。包含最初的,针对特征的提问
  2. 中间节点:既有进边也有出边,进边只有一条,出边可以有很多条。都是针对特征的提问。
  3. 叶子节点:有进边,没有出边,每个叶子节点都是一个类别标签。
  4. 子节点和父节点:在两个相连的节点中,更接近根节点的是父节点,另一个是子节点

决策树算法的核心:

  1. 如何从数据表现中发现最佳节点和最佳分枝?
  2. 如何让决策树停止生长,防止过拟合

1.1 sklearn中的决策树

  • 模块 sklearn.tree
模块 功能
tree.DecisionTreeClassifier 分类树
tree.DecisiionTreeRegressor 回归树
tree.export_graphviz 生成决策树图,画图专用
tree.ExtraTreeClassifier 高随机版本的分类树
tree.ExtraTreeRegresso 高随机版本的回归树
  • sklearn的基本建模流程
  1. 实例化:建立评估模型对象
  2. 通过模型接口训练模型
  3. 通过模型接口提取需要的信息

相应的代码流程为:

from sklearn import tree   导入需要的模块

clf = tree.DecisionTreeClassifier()  # 实例化
clf = clf.fit(xtrain,ytrain)   # 用训练集训练模型
result = clf.score(xtest,ytest)   # 调用score接口,获得测试集模型评估结果

2. 分类树DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, splitter=’best’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort=False)

2.1 重要参数

2.1.1 criterion

为了要将表格转化为一棵树,决策树需要找出最佳节点和最佳的分枝方法,对分类树来说,衡量这个“最佳”的指标叫做“不纯度”。通常来说,不纯度越低,决策树对训练集的拟合越好。现在使用的决策树算法在分枝方法上的核心大多是围绕在对某个不纯度相关指标的最优化上。
不纯度基于节点来计算,树中的每个节点都会有一个不纯度,并且子节点的不纯度一定是低于父节点的,也就是说,在同一棵决策树上,叶子节点的不纯度一定是最低的。
criterion这个参数正是用来决定不纯度的计算方法的。sklearn提供了两种选择:
1)输入”entropy“,使用信息熵(Entropy)
2)输入”gini“,使用基尼系数(Gini Impurity)
在这里插入图片描述其中t代表给定的节点,i代表标签的任意分类, 代表标签分类i在节点t上所占的比例。注意,当使用信息熵
时,sklearn实际计算的是基于信息熵的信息增益(Information Gain),即父节点的信息熵和子节点的信息熵之差。
比起基尼系数,信息熵对不纯度更加敏感,对不纯度的惩罚最强。但是在实际使用中,信息熵和基尼系数的效果基本相同。信息熵的计算比基尼系数缓慢一些,因为基尼系数的计算不涉及对数。另外,因为信息熵对不纯度更加敏感,所以信息熵作为指标时,决策树的生长会更加“精细”,因此对于高维数据或者噪音很多的数据,信息熵很容易过拟合,基尼系数在这种情况下效果往往比较好。当模型拟合程度不足的时候,即当模型在训练集和测试集上都表现不太好的时候,使用信息熵。当然,这些不是绝对的。

到这里,决策树的基本流程其实可以简单概括如下:
在这里插入图片描述

  1. 计算全部特征的不纯度指标
  2. 选取不纯度指标最优的特征来分枝
  3. 在第一个特征的分支下,计算全部特征的不纯度指标
  4. 选取不纯度指标最优的特征继续分枝。。。。。。。
  5. 直到没有更多的特征可用,或整体的不纯度指标已经最优,决策树就会停止生长
  • 建立一棵树
  1. 导入需要的算法库和模块
from sklearn import tree
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
  1. 探索数据
wine = load_wine()
print(wine)    
print(type(wine))    # <class 'sklearn.utils.Bunch'>
data = wine.data
target = wine.target
print(type(data))    # <class 'numpy.ndarray'>
print(type(target))   # <class 'numpy.ndarray'>

import pandas as pd
df = pd.concat([pd.DataFrame(data),pd.DataFrame(target)],axis=1)
print(df)   # [178 rows x 14 columns]
print(type(df))   # <class 'pandas.core.frame.DataFrame'>

sklearn数据集返回值介绍:

  • load 和 fetch 返回的数据类型 datasets.base.Bunch (字典格式):

    • data:特征数据数组(特征值输入)
    • target:标签数组(目标输出)
    • feature_names:特征名称
    • target_names:标签名称
    • DESCR:数据描述
  • Bunch 虽然是字典格式,但可以通过 ‘点’ 的形式把属性点出来

print(wine.data)
print(wine.target)
print(wine.DESCR)
print(wine.feature_names)
print(wine.target_names)
  1. 划分训练集和测试集
xtrain,xtest,ytrain,ytest = train_test_split(wine.data,wine.target,test_size=0.3,random_state=1)
print(xtrain.shape)    # (124, 13)
print(xtest.shape)     # (54, 13)
print(wine.data.shape)   # (178, 13)
print(ytest.shape)       # (54,)
  1. 建立模型
clf = tree.DecisionTreeClassifier(criterion="entropy")
clf = clf.fit(xtrain,ytrain)
score = clf.score(xtest,ytest)
print(score)     # 0.9444444444444444
  # 当criterion="gini"   score = 0.9629629629629629
  1. 画出一棵树
import graphviz
feature_name = ["酒精","苹果酸","灰","灰的碱性","镁","总酚","类黄酮","非黄烷类酚类","花青素",
                "颜色强度","色调","od280/od315稀释葡萄酒","脯氨酸"]
dot_data = tree.export_graphviz(clf,
                                feature_names=feature_name,    # 特征名
                                class_names=["琴酒","雪莉","贝尔摩德"],  # 类别名
                                filled=True,   # 颜色
                                rounded=True)   # 矩形是否带圆边
graph = graphviz.Source(dot_data)
graph
  1. 特征重要性
print(clf.feature_importances_)
print([*zip(feature_name,clf.feature_importances_)])

在这里插入图片描述

2.1.2 random_state & spliter

random_state用来设置分枝中的随机模式的参数,默认None,在高维度时随机性会表现更明显,低维度的数据(比如鸢尾花数据集),随机性几乎不会显现。输入任意整数,会一直长出同一棵树,让模型稳定下来.
splitter也是用来控制决策树中的随机选项的,有两种输入值,输入”best",决策树在分枝时虽然随机,但是还是会优先选择更重要的特征进行分枝(重要性可以通过属性feature_importances_查看),输入“random",决策树在分枝时会更加随机,树会因为含有更多的不必要信息而更深更大,并因这些不必要信息而降低对训练集的拟合。这也是防止过拟合的一种方式。当你预测到你的模型会过拟合,用这两个参数来帮助你降低树建成之后过拟合的可能性。当然,树一旦建成,我们依然是使用剪枝参数来防止过拟合.

clf = tree.DecisionTreeClassifier(criterion="entropy",random_state=30,
                                  splitter="random")
clf = clf.fit(xtrain,ytrain)
score = clf.score(xtest,ytest)
print(score)   # 0.9629629629629629

2.1.3 剪枝参数

在不加限制的情况下,一棵决策树会生长到衡量不纯度的指标最优,或者没有更多的特征可用为止。这样的决策树往往会过拟合,这就是说,它会在训练集上表现很好,在测试集上却表现糟糕。我们收集的样本数据不可能和整体的状况完全一致,因此当一棵决策树对训练数据有了过于优秀的解释性,它找出的规则必然包含了训练样本中的噪声,并使它对未知数据的拟合程度不足。

训练集的模型拟合如何?

score_train = tree.DecisionTreeClassifier().fit(xtrain,ytrain).score(xtrain,ytrain)
print(score_train)    # 1

为了让决策树有更好的泛化性,我们要对决策树进行剪枝。剪枝策略对决策树的影响巨大,正确的剪枝策略是优化决策树算法的核心。sklearn为我们提供了不同的剪枝策略。

  • max_depth
    限制树的最大深度,超过设定深度的树枝全部剪掉
    这是用得最广泛的剪枝参数,在高维度低样本量时非常有效。决策树多生长一层,对样本量的需求会增加一倍,所以限制树深度能够有效地限制过拟合。在集成算法中也非常实用。实际使用时,建议从=3开始尝试,看看拟合的效果再决定是否增加设定深度
  • min-samples_leaf & min_samples_split
    min_samples_leaf限定,一个节点在分枝后的每个子节点都必须包含至少min_samples_leaf个训练样本,否则分枝就不会发生,或者,分枝会朝着满足每个子节点都包含min_samples_leaf个样本的方向去发生
    一般搭配max_depth使用,在回归树中有神奇的效果,可以让模型变得更加平滑。这个参数的数量设置得太小会引起过拟合,设置得太大就会阻止模型学习数据。一般来说,建议从=5开始使用。如果叶节点中含有的样本量变化很大,建议输入浮点数作为样本量的百分比来使用。同时,这个参数可以保证每个叶子的最小尺寸,可以在回归问题中避免低方差,过拟合的叶子节点出现。对于类别不多的分类问题,=1通常就是最佳选择。
    min_samples_split限定,一个节点必须要包含至少min_samples_split个训练样本,这个节点才允许被分枝,否则分枝就不会发生。
xtrain,xtest,ytrain,ytest = train_test_split(wine.data,wine.target,test_size=0.3)
clf = tree.DecisionTreeClassifier(criterion="entropy",
                                  random_state=30,
                                  splitter="random",
                                  max_depth= 3,     
                                  min_samples_leaf=10,
                                  min_samples_split=20
                                  )
clf = clf.fit(xtrain,ytrain)
test_score = clf.score(xtest,ytest)
print(test_score)   # 0.8888888888888888
train_score = clf.score(xtrain,ytrain)
print(train_score)  # 0.8870967741935484
  • max_features & min_impurity_decrease
    max_features限制分枝时考虑的特征个数,超过限制个数的特征都会被舍弃。和max_depth异曲同工,
    max_features是用来限制高维度数据的过拟合的剪枝参数,但其方法比较暴力,是直接限制可以使用的特征数量而强行使决策树停下的参数,在不知道决策树中的各个特征的重要性的情况下,强行设定这个参数可能会导致模型学习不足。如果希望通过降维的方式防止过拟合,建议使用PCA,ICA或者特征选择模块中的降维算法。
    min_impurity_decrease限制信息增益的大小,信息增益小于设定数值的分枝不会发生。这是在0.19版本中更新的功能,在0.19版本之前时使用min_impurity_split。
  • 确认最优的剪枝参数
    那具体怎么来确定每个参数填写什么值呢?这时候,我们就要使用确定超参数的曲线来进行判断了,继续使用我们已经训练好的决策树模型clf。超参数的学习曲线,是一条以超参数的取值为横坐标,模型的度量指标为纵坐标的曲线,它是用来衡量不同超参数取值下模型的表现的线。在我们建好的决策树里,我们的模型度量指标就是score。

2.1.4 目标权重参数

  • class_weight & min_weight_fraction_leaf
    完成样本标签平衡的参数。样本不平衡是指在一组数据集中,标签的一类天生占有很大的比例。比如说,在银行要判断“一个办了信用卡的人是否会违约”,就是是vs否(1%:99%)的比例。这种分类状况下,即便模型什么也不做,全把结果预测成“否”,正确率也能有99%。因此我们要使用class_weight参数对样本标签进行一定的均衡,给少量的标签更多的权重,让模型更偏向少数类,向捕获少数类的方向建模。该参数默认None,此模式表示自动给与数据集中的所有标签相同的权重。
    有了权重之后,样本量就不再是单纯地记录数目,而是受输入的权重影响了,因此这时候剪枝,就需要搭配min_weight_fraction_leaf这个基于权重的剪枝参数来使用。另请注意,基于权重的剪枝参数(例如min_weight_fraction_leaf)将比不知道样本权重的标准(比如min_samples_leaf)更少偏向主导类。如果样本是加权的,则使用基于权重的预修剪标准来更容易优化树结构,这确保叶节点至少包含样本权重的总和的一小部分。

2.2 重要属性和接口

属性是在模型训练之后,能够调用查看的模型的各种性质。对决策树来说,最重要的feature_importances_,能够查看各个特征对模型的重要性。
sklearn中许多算法的接口都是相似的,比如说我们之前已经用到的fitscore,几乎对每个算法都可以使用。除了这两个接口之外,决策树最常用的接口还有applypredict。apply中输入测试集返回每个测试样本所在的叶子节点的索引,predict输入测试集返回每个测试样本的标签。返回的内容一目了然并且非常容易,大家感兴趣可以自己下去试试看。
在这里不得不提的是,**所有接口中要求输入X_train和X_test的部分,输入的特征矩阵必须至少是一个二维矩阵。sklearn不接受任何一维矩阵作为特征矩阵被输入。**如果你的数据的确只有一个特征,那必须用reshape(-1,1)来给矩阵增维;如果你的数据只有一个特征和一个样本,使用reshape(1,-1)来给你的数据增维。

# apply返回每个测试集样本所在的叶子节点的索引
print(clf.apply(xtest))
# predict返回每个测试集样本的分类、回归结果
print(clf.predict(xtest))

2.3 小总结:

至此,我们已经写完了分类树DecisionTreeClassifier和决策树绘图的所有基础。我们讲解了决策树的基本流程,分类树的八个参数,一个属性,四个接口,以及绘图所用的代码。
八个参数:Criterion,两个随机参数(random_state, splitter),五个剪枝参数(max_depth, min_samples_split, min_samples_leaf, max_feature, min_impurity_decrease)
一个属性:feature_importances_
四个接口:fit, score, apply, predict

3 回归树DecisionTreeRegressor

class sklearn.tree.DecisionTreeRegressor(criterion=’mse’, splitter=’best’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, presort=False)

几乎所有参数,属性及接口都和分类树一模一样。需要注意的是,在回归树中,没有标签分布是否均衡的问题,因此没有class_weight这样的参数。

3.1 重要参数、属性以及接口

  1. criterion
    回归树衡量分枝质量的指标,支持的标准有三种:
  • 输入"mse"使用均方误差mean squared error(MSE),父节点和叶子节点之间的均方误差特征选择的标准,这种方法通过使用叶子节点的均值来最小化L2损失。
  • 输入“friedman_mse”使用费尔德曼均方误差,这种指标使用弗里德曼针对潜在分枝中的问题改进后的均方误差。
  • 输入"mae"使用绝对平均误差MAE(mean absolute error),这种指标使用叶节点的中值

属性中最重要的依然是feature_importances_,接口依然是apply, fit, predict, score最核心。
在这里插入图片描述
其中N是样本数量,i是每一个数据样本,fi是模型回归出的数值,yi是样本点i实际的数值标签。所以MSE的本质,其实是样本真实数据与回归结果的差异。在回归树中,MSE不只是我们的分枝质量衡量指标,也是我们最常用的衡量回归树回归质量的指标,当我们在使用交叉验证,或者其他方式获取回归树的结果时,我们往往选择均方误差作为我们的评估(在分类树中这个指标是score代表的预测准确率)。在回归中,我们追求的是,MSE越小越好。
然而,回归树的接口score返回的是R平方,并不是MSE。R平方被定义如下:
在这里插入图片描述
其中u是残差平方和(MSE * N),v是总平方和,N是样本数量,i是每一个数据样本,fi是模型回归出的数值,yi是样本点i实际的数值标签。y帽是真实数值标签的平均数。R平方可以为正为负(如果模型的残差平方和远远大于模型的总平方和,模型非常糟糕,R平方就会为负),而均方误差永远为正。
值得一提的是,虽然均方误差永远为正,但是sklearn当中使用均方误差作为评判标准时,却是计算”负均方误差“(neg_mean_squared_error)。这是因为sklearn在计算模型评估指标的时

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值