Text-to-SQL小白入门(五)开源最强代码大模型Code Llama

摘要

本文介绍了Code Llama大模型的基本概括,包含了论文的摘要、结果、结论以及核心方法,对于了解和实践Code Llama有一定帮助。

论文概述

上一篇介绍了指令进化大模型WizardLM,留了一个坑,补上Code Llama论文学习,可以作为下游任务的基座模型,比如Text2SQL。目前DB-GPT-Hub分支refactor支持了Code Llama模型微调,我粗糙地跑7b基础模型使用lora方法spider数据集上能达到0.66,大家也可以去试试。

再多说一句题外话,eosphoros-ai组织最新有个新项目Awesome-Text2SQL,收集了Text2SQL+LLM领域的相关综述、基础大模型、微调方法、数据集、实践项目等等,欢迎围观尝试。

基本信息

进入正题,文章很新,开源很强,可以商用。

论文摘要

总结起来一句话:开源模型代码领域最强,可泛化。

标题也说明了要做基础模型,就像人工智能领域中的CNN一样。

  • 发布了Code Llama,基于Llama 2大模型,在开源模型中表现了最先进的性能。
  • 提供多种风格来覆盖广泛的应用:
    • 基础模型(Code Llama)
    • Python领域(Code Llama Python)
    • 指令遵循模型(Code Llama instruction)
    • 每个模型具有7B, 13B和34B参数。
  • 在几个代码基准测试中,Code Llama在开放模型中达到了最先进的性能。
    • 在HumanEval和MBPP上的得分分别高达53%和55%。
    • Code Llama Python 7B在HumanEvalMBPP上优于Llama 2 70B,并且所有的模型在数据集MultiPL-E上都优于所有其他公开可用的模型。

结果

数据集HumanEval 和 MBPP

  • GPT-4 在HumanEval数据集上一次生成通过率(pass@1)为67%
  • GPT-3.5在HumanEval数据集上一次生成通过率(pass@1)为48.1%
### Codellama 训练数据集获取与使用 对于Code Llama模型而言,其预训练阶段依赖于大量的编程代码语料库以确保能够理解和生成高质量的代码片段[^1]。然而,在特定应用场景下为了提升性能表现,则可能需要额外的数据集来进行进一步微调。 #### 微调所需的数据集特点 当考虑对Code Llama进行微调时,所选用的数据集应当具备针对性强的特点,即专注于某一类别的编码任务或是解决某些具体领域内的问题。例如,在SQL查询生成方面表现出色的`sql-create-context`数据集就非常适合用来优化涉及数据库操作的任务处理能力[^2]。 #### 获取和准备数据集的方法 要获得适合微调使用的数据集,可以从公开资源处下载,像Hugging Face这样的平台上提供了丰富的选项供研究者挑选。对于上述提到的SQL相关案例来说,可以直接访问链接地址并按照指引完成文件下载: - 数据集名称:sql-create-context - 下载页面:<https://huggingface.co/datasets/b-mc2/sql-create-context> 另外还有其他类型的优质开源数据源可供探索,比如GitHub上的项目仓库、Stack Overflow论坛中的问答记录等都是不错的选择。值得注意的是,如果计划利用自定义收集到的真实世界场景下的样本来构建专属的知识库,则需注意版权归属等问题。 #### 实际应用中的注意事项 在实际执行微调之前,除了准备好合适的数据外,还需要配置好相应的硬件环境和支持软件栈。考虑到大型语言模型所需的计算资源较多,建议采用多GPU协同工作的方案来加速整个流程进展。同时也要关注内存占用情况以及网络通信效率等因素的影响。 ```bash # 假设已经安装好了必要的Python包和其他依赖项 cd /path/to/your/project git clone https://github.com/OpenBMB/UltraFeedback.git pip install -r UltraFeedback/requirements.txt ``` 通过以上介绍可以了解到如何选取恰当的数据集并对Code Llama实施有效的定制化调整措施,进而提高目标应用程序的表现水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值