摘要
本文介绍了Code Llama大模型的基本概括,包含了论文的摘要、结果、结论以及核心方法,对于了解和实践Code Llama有一定帮助。
论文概述
上一篇介绍了指令进化大模型WizardLM,留了一个坑,补上Code Llama论文学习,可以作为下游任务的基座模型,比如Text2SQL。目前DB-GPT-Hub分支refactor支持了Code Llama模型微调,我粗糙地跑7b基础模型使用lora方法spider数据集上能达到0.66,大家也可以去试试。
再多说一句题外话,eosphoros-ai组织最新有个新项目Awesome-Text2SQL,收集了Text2SQL+LLM领域的相关综述、基础大模型、微调方法、数据集、实践项目等等,欢迎围观尝试。
基本信息
进入正题,文章很新,开源很强,可以商用。
- 英文标题:Code Llama: Open Foundation Models for Code
- 中文标题:Code Llama:代码领域的开源基础模型
- 发表时间:2023年8月24日 v1
- 作者单位:Meta AI(Facebook)
- 论文链接:https://arxiv.org/abs/2308.12950
- 代码链接:https://github.com/facebookresearch/codellama
论文摘要
总结起来一句话:开源模型代码领域最强,可泛化。
标题也说明了要做基础模型,就像人工智能领域中的CNN一样。
- 发布了Code Llama,基于Llama 2大模型,在开源模型中表现了最先进的性能。
- 提供多种风格来覆盖广泛的应用:
-
- 基础模型(Code Llama)
- Python领域(Code Llama Python)
- 指令遵循模型(Code Llama instruction)
- 每个模型具有7B, 13B和34B参数。
- 在几个代码基准测试中,Code Llama在开放模型中达到了最先进的性能。
-
- 在HumanEval和MBPP上的得分分别高达53%和55%。
- Code Llama Python 7B在HumanEval和MBPP上优于Llama 2 70B,并且所有的模型在数据集MultiPL-E上都优于所有其他公开可用的模型。
- 允许在研究和商业使用的许可下使用Code Llama,模型下载地址。
结果
数据集HumanEval 和 MBPP
- GPT-4 在HumanEval数据集上一次生成通过率(pass@1)为67%
- GPT-3.5在HumanEval数据集上一次生成通过率(pass@1)为48.1%