感知器-面向幼儿园的人工智能(2)

本文以简单易懂的方式介绍了神经网络的基础——感知器。通过模拟决定是否去看电影的场景,解释了感知器的工作原理,包括权重、偏置单元和决策过程。感知器不仅可以作为决策工具,还可以实现简单的计算,如模拟逻辑门。感知器网络的普遍性意味着它们能够处理复杂的计算任务。下一篇文章将探讨sigmoid神经元。
摘要由CSDN通过智能技术生成

*请注意,这一系列文章的骨架来源于Neural Networks and Deep Learning ,本人阅读后对原文进行提炼和加工,重构了整个文笔以让中文的初学者更容易阅读和理解,并首发于CSDN博客上,转载请先联系本人微信986597353,否则一经发现,视为侵权,必将追究法律责任

导航

第一章 面向幼儿园的人工智能

第一篇: 开篇-机器学习

第二篇: 感知器

第三篇: sigmoid神经元

第四篇: 神经网络的结构


第二章 面向小学生的机器学习


正文 神经网络初探-感知器


在生物学上,感知器是生物神经细胞的简单抽象,单个神经细胞可被视为一种只有两种状态的机器——激动时为‘是’,而未激动时为‘否’。神经细胞的状态取决于从其它的神经细胞收到的输入信号量,及突触的强度(抑制或加强)。当信号量总和超过了某个阈值时,细胞体就会激动,产生电脉冲。电脉冲沿着轴突并通过突触传递到其它神经元。


实际上这是从百度百科上摘抄的一段描述,不如让我们用简单的生活例子来试试当一回上帝,创造一个简单的生物神经细胞。

 

当我们周末想要去看电影的时候,也许会有下面三个因素影响我们:

 

1.是否需要加班


2.是否有男女朋友


3.电影的豆瓣分数是否达到你的心理标准线


这样我们就可以拥有三个二元制变量,二元制指的是这个变量只有两个值,即真或假,我们假设这三个变量是x1,x2,x3。当我们需要加班的时候x1可以取1,反之则可以取0,1代表真,0代表假。x2 和 x3 同上。


现实生活中我们对每个事情分配的关注力并非是一致的,这时候我们可以用一个权重weight来代表我们对这个事情的关注力。

现在,我们先假设我们非常的喜欢电影,看电影不是为了晚上能干羞羞的事情,哪怕是面对逐梦演艺圈我们也会开心的开着小奔奔去看,那么因素2和因素3的权重值我们就可以设定的非常低,因为这对我们的影响不大,只有当我们需要加班的时候我们才不会去看电影,比如w1 = 6 w2 =1 w3=1,


想象一下,我们做不做一件事情,或者说现实生活中某一事件的是否发生,往往有一个临界点。过了这个临界点就代表着DO(做,发生),没到达临界点则这个事情会永远NOT DO(不发生),比如说早上赖床的时候,只有起来和不起来只有两个状态,决定起床的那一刻就是临界点啦。在这里我们把临界点数学化,数字化,并且用界限来描述它。

界限实际上就是机器学习中的偏置单元(basic):假设我们把界限设成了5,当我们的当加权值的总和W sum =w1+w2+w3 > 5的时候我们就会去看电影,那么这个时候条件2和条件3就会变得毫无影响力了,因为w2和w3相加也只有2,它完全不会影响到W sum是否>5,只要你不需要加班,那么你就一定会去看电影,只要你加班,你一定不会去看电影。假如我们将界限(threshold)调整到W sum =w1+w2+w3>6的时候,那么条件1便仅仅是一个必要非充分条件:假如我们不加班我们不一定会去看电影,还要取决于我们是否有男女朋友和电影的豆瓣评分是否达到我们的心理标准线,但是我们加班一定不会去看电影。

在这个例子中,降低界限(threshlod)表示我们更加想要去看电影,因为更容易达成,这里的界限。这个例子其实就是一个活生生的机器学习中的感知器,对不同的迹象加权是感知器中的权重,设置界限是感知器中的偏置单元,最后做出的决策就是感知器的输出,神经网络实际上可以视为由许多的感知器组成的网络。


这只是感知器的其中一种用法,作为一种衡量迹象的决策,另一种用法则是作为一个计算方法,比如ANDORNAND。例如,假设我们的感知器现在有两个输入,每一个都是-2的权重并且有一个全局的偏置单元3,长的和下面一样:


当我们输入x1=0 x2=0的时候,(−2)∗0+(−2)∗0+3=3,这个时候感知器的输出就是正的(1),当我们输入11的时候则会输出负的(0),这个时候感知器就充当一个NAND门了这个例子表明了我们可以利用感知器去做一些比较简单的计算。实际上利用这个特性我们是可以做出任何的计算。例如我们可以利用NAND去建立一个两个位的电路,x1x2,这需要我们去计算电路的位和,即当x1x2都等于1的情况下要进位

 

当我们要在神经网络上建立类似电路门的时候,我们可以把所有的NAND门替换成两个带有输入的感知器,每一个的权重都是-2,并且有一个为3的全局偏置单元,长这个样子:


关于这个感知器的神经网络一个值得注意的地方最左边的感知器的输出备用了两次,以用来作为最底端的感知器的输入。之前我们并没有说这种双输入到同一地方的感知器是否被允许,事实上,它并非是太大的问题,如果我们并不想要这种形式的感知器,那么最简单的方式就是直接合并两条线,即用一条权重为-4的连接代替两条权重为-2

 

到目前为,感知器网络的输入都被当作变量,比如x1和x2。实际上,通常我们会在额外给感知器添加一层-输入层(the input layer),用于对输入进行编码。

 

 

 

这是输入感知器的符号,用于那些只有一个输出而没有输入的地方。这是一个缩写,它并非真的表明感知器不需要输入。假设我们确实有一个感知器没有输入,那么jwjxj会永远变成0,对于感知器来说则会永远输出同样的值,而非我们想要的期望值,最好是认为输入感知器并非是一个真正的感知器,它更像是一个被简单的定义为输出期望值(x1,x2,。。。。)的特殊的结合。

 

这个加法器的例子示范了感知器的网络可以被用作模仿包含许多NAND门的电子,并且因为NAND门具有对计算的普遍性,于是出现了感知器页具有计算的普遍性的结果。


下一篇 sigmoid网络

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值