虾米ning
码龄13年
关注
提问 私信
  • 博客:103,020
    103,020
    总访问量
  • 71
    原创
  • 2,003,949
    排名
  • 12
    粉丝
  • 0
    铁粉

个人简介:keep learning

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2012-02-28
查看详细资料
个人成就
  • 获得33次点赞
  • 内容获得12次评论
  • 获得100次收藏
创作历程
  • 11篇
    2016年
  • 18篇
    2015年
  • 33篇
    2014年
  • 18篇
    2013年
成就勋章
TA的专栏
  • 网络学习
    3篇
  • 编解码
    1篇
  • C++
    3篇
  • 设计模式
    1篇
  • 嵌入式开发
    1篇
  • 机器学习
    18篇
  • LINUX学习
    2篇
  • LAMP学习
    3篇
  • 视频图像学习
    10篇
  • 编程练习
    4篇
  • C#学习
    2篇
  • 算法思考
    3篇
  • 思想
  • 所思所想
    1篇
  • 数据分析
    6篇
  • CUDA
    1篇
  • github
    1篇
  • 交易
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

图像object detection目标检基本学习点

Haar特征和boost分类器用于人脸识别DPMHog+SVM行人检测RCNN图像物体检测
原创
发布博客 2016.08.26 ·
347 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

caffe windows

https://github.com/BVLC/caffe/tree/windows 官方教程遇到的问题boost没有安装好,将boost作为附加库和lib库..  而且anaconda  python路径没有安装好,虽然在props文件里面已经设定了pyhon_dir路径,但是仍旧没有。这个时候直接附加库目录: F:\DL\boost_1_61_0;  C:\An
原创
发布博客 2016.07.14 ·
512 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

numpy给图片加高斯噪声

给加高斯噪声的意思,就是在原图像矩阵上面加一个符合高斯或者叫正态分布特征的矩阵。生成随机噪声的三个方法,如果我们的目标矩阵是一个r*c的矩阵,要生成一个均值是mean,标准差sigma的随机噪声矩阵,那么是这样sigma*np.random.randn(r,c)+mean, #输入是两个参数,一个mean,一个sigma。sigma*np.random.standard_n
原创
发布博客 2016.01.18 ·
10516 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

在windows下编译caffe的python接口(CPU模式)

主要的资料来源是happynear的教程(英文github,中文csdn博客),但是里面对python接口是分散讲的,而且有个地方有遗漏,摸索一天才发现怎么弄,所以这里针对python的部分单独讲讲。 我用的是VS2013,CPU模式,因为我的笔记本的N卡太弱了,所以我后来还是用CPU模式了。 第一步  下载所需2个包一个happynear的github的包,另一个他的3rdp
原创
发布博客 2016.01.17 ·
3785 阅读 ·
0 点赞 ·
5 评论 ·
2 收藏

图像处理和OpenCV小记

不管是图像处理还是计算机视觉,都越来越需要机器学习做特征集的训练了。但是feature engineer或者说图像本身各种关键特征的提取也是很关键的。今天在pysearch上看到了这句话也正是一样, A clever use of contour properties can save you from training complicated machine learning models.
原创
发布博客 2016.01.14 ·
136 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Opencv里面的TermCriteria对象解释

用meanshift的时候,看到能够在视频里面识别某个物体还画个框。细看了下OpenCV里面meanshift方法是这样用的。cv2.meanShift(dst, track_window, term_crit)其实meanshift识别和这个track_window真没什么直接关系,meanshift识别的就是密度最大的那个点,找到那个点再加个框就行了,我原来觉得尺寸人家都能自己算出
原创
发布博客 2016.01.14 ·
11024 阅读 ·
7 点赞 ·
1 评论 ·
40 收藏

从目的上来讲BackProjection

我第一次遇到BackProjection这个词觉得很学术,我也不知道为什么要用,直到我遇到一个例子,这个在此链接有讲,但是我把它讲的再细化一下。首先是这个例子。我们有一个梅西的图片,现在我们要把草皮绿色的地方提取出来,那么怎么做呢? 最简单你可以用颜色为绿色的一段阈值进行提取,现在我们用BackProjection这个方式进行提取。首先我把梅西那张图里面的其中一块草
原创
发布博客 2016.01.13 ·
1436 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

python因为opencv无法读取图像而出现python.exe停止工作

使用opencv处理一堆图像,有jpg,png和gif。jpg的图像很多,程序处理过程中出现"python.exe程序已停止工作",后来发现是cv2.imread无法读取gif图像造成的。
原创
发布博客 2016.01.11 ·
1127 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pandas和numpy使用小记

numpy数组不可以扩展可是它最大的缺点就是不可动态扩展——“NumPy的数组没有这种动态改变大小的功能,numpy.append()函数每次都会重新分配整个数组,并把原来的数组复制到新数组中。http://blog.chinaunix.net/uid-23100982-id-3164530.htmlnumpy数组的展平可以用flatten,也可以用numpy.rave
原创
发布博客 2016.01.11 ·
2019 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

灰度共生矩阵计算熵遇到0的问题解决

灰度共生矩阵有非常多的纹理特征维度。熵就是其中之一,可以表示图像分布聚集的程度。如果图像分布比较均匀,熵就比较小,就越有可能是噪声;反正,可能是真正有用的图像。计算公式就是 - sum(P(i,j)*log(P(i,j))其中有个bug就是灰度共生矩阵有可能有0的现象出现,log(0)是没有意义的对于这个问题,我在网上找的答案是计算的时候把这个0的时候剔除掉,不计算在内
原创
发布博客 2016.01.10 ·
956 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

numpy多维数组操作np.apply_over_axes使用

参考http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.apply_over_axes.htmlnumpy.apply_over_axes(func, a, axes)[source]其中a是需要操作的输入数组,func是操作函数比如加和sum,求均值average或者其他自定义函数,axes是需要操作的轴
原创
发布博客 2016.01.10 ·
4794 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

github基本使用的命令

1) 配置 git首先在本地创建 ssh key:ssh-keygen -t rsa -C "your_email@youremail.com"ssh -T git@github.comgit配置git config --global user.name "your name"git config --global user.email "your_email@your
转载
发布博客 2015.12.06 ·
282 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

简单说直方图均衡化的思想

直方图均衡化的主要思想就是,让出现频率较高的像素值,在直方图均衡化后,拥有较高的像素值。也就是高频像素值,最经常出现的,信息量最多的,是最亮的。反之,低频像素值,最不经常出现的,信息量最少的,是最暗的RGB彩色图像,可以分别对RGB三个波段进行直方图均衡化处理;也可以转换到HSV空间,对V分量进行处理。最后就是把灰度的频率信息,转化成,像素亮度信息。详细例子wi
原创
发布博客 2015.12.06 ·
1899 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

[机器学习手记]随机森林与数字识别

kaggle数字识别题目介绍和数据地址:https://www.kaggle.com/c/digit-recognizer解法:python.sklearn的随机森林方法不只# -*- coding: utf-8 -*-"""Created on Wed Nov 25 20:39:46 2015@author: Ning LI"""import num
原创
发布博客 2015.12.06 ·
656 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ubuntu无线网卡配置

auto lo                              #配置loiface lo inet loopbackiface eth0 inet dhcp       #配置eth0auto hot-plug wlan0       #配置wlan0iface wlan0 inet dhcp方法一--------------------------
原创
发布博客 2015.11.30 ·
368 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

[机器学习手机13]scikit-learn几种交叉验证方式

这次需要介绍的是scikit-learn库里面的几种常见的交叉验证方式: 1) LeavePOut, 2) LeaveOneOut, 3) KFold, 4) Stratified KFold其实归并起来,主要是两种,KFold和LeavePOut先讲KFold,sklearn.cross_validation.KFold(n, n_folds=3, shuffle=False
原创
发布博客 2015.11.26 ·
210 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Jetson tk1 开发板重刷系统

电脑使用:需要用linux的主机,将镜像文件刷到jetson tk1里面,而且千万不要用树莓派,我自己用树莓派无法执行里面的一个mksparse的二进制文件, 会显示Mksparse: cannot execute binaries,但是在ubuntu里面没有这个问题。树莓派的不是用户的权限问题,而且对二进制文件本身也加了chmod +x的执行权限了,所以应该是系统问题。因此最好用正经的l
原创
发布博客 2015.11.25 ·
512 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

github学习笔记

git初始化操作1)git init2)git remote add origin git@github.com:cmusphinx/pocketsphinx.git3)git clone git@XXX.git4)git fetch origin拉代码git pull origin master远程仓库git remote add
原创
发布博客 2015.05.15 ·
93 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

动态规划 栈问题

有n个数顺序(依次)入栈,出栈序列有Cn种,Cn=[1/(n+1)]*(2n)!/[(n!)*(n!)]()这个进出栈的问题里面。一旦元素决定好时机进去了,他前面元素的进出站可以递归,他后面元素的进出站时机也可以用递归计算,。f(1)=1f(2)=2f(3)=5f(4)=f(0)*f(3)+f(1)*f(2)+f(2)
原创
发布博客 2015.05.12 ·
560 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

[编程思考练习12]C++q前置声明

class A{public:int n;const int i;int &c;public:A(int N):c(2),i(12){this.n=N}}前置声明能够:1) 减少对象的大小 2) A里面包含B对象,传统方法B改变了额,那么A跟着也要重新编译一下。而如果A里面包含的是B *b这种指针或者引用对象,
原创
发布博客 2015.05.12 ·
155 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多