利用nn.BatchNorm构建带BN的神经网络

目录

网络构建:

用写好的fit函数进行模型训练

综合调参:

Bach Normalization与Batch_size综合调参


网络构建:

在构建网络中,我们会定义好一些选择哪种激活函数和是否需要进行BatchNorm以及是在激活函数之前进行BatchNorm还是之后进行,其它为正常网络构建过程:

import torch.nn as nn
import torch

class net_class1(nn.Module):
    def __init__(self,act_fun=torch.relu,in_features=2,n_hidden=4,out_features=1,bias=True,BN_model=None,momentum=0.1):
        super(net_class1, self).__init__()
        self.linear1 = nn.Linear(in_features,n_hidden,bias=bias)
        self.bn1 = nn.BatchNorm1d(n_hidden,momentum=momentum)
        self.linear2 = nn.Linear(n_hidden,out_features,bias=bias)
        self.act_fun = act_fun
        self.BN_model = BN_model

    def forward(self,x):
        if self.BN_model == 'pre':
            z1 = self.bn1(self.linear1(x))
            f1 = self.act_fun(z1)
            out = self.linear2(f1)
        elif self.BN_model == 'post':
            z1 = self.linear1(x)
            f1 = self.act_fun(z1)
            out = self.linear2(self.bn1(f1))
        else:
            z1 = self.linear1(x)
            f1 = self.act_fun(z1)
            out = self.linear2(f1)
        return out

""""""

无论bn层在隐藏层之前还是之后,对实际结果不会有影响

用写好的fit函数进行模型训练

from  MyPython.test.study.MyTorchUtils import  MyTorchUtils

"""fit model"""
utils = MyTorchUtils()
torch.manual_seed(420)

# create data
features,labls = utils.tensorDataGenRe(bag=2,w=[2,-1],bias=False)

# split data
train_loader,test_loader = utils.split_loader(features,labls)

# instantiation nn , enter training mode
relu_model1_norm = net_class1(BN_model='pre')
relu_model1_norm.train()

lr = 0.3
utils.fit(net=relu_model1_norm,
          criterion=nn.MSELoss(),
          optimizer=optim.SGD(relu_model1_norm.parameters(),lr=lr),
          batchdata=train_loader,
          epochs=20,
          cla=False)

print([*relu_model1_norm.modules()][2].weight)
print([*relu_model1_norm.modules()][2].bias)

print([*relu_model1_norm.modules()][2].running_mean)
print([*relu_model1_norm.modules()][2].running_var)

# enter testing mdoe
relu_model1_norm.eval()
print(utils.mse_cla(train_loader, relu_model1_norm))
print(utils.mse_cla(test_loader, relu_model1_norm))

print([*relu_model1_norm.modules()][2].weight)
print([*relu_model1_norm.modules()][2].bias)

print([*relu_model1_norm.modules()][2].running_mean)
print([*relu_model1_norm.modules()][2].running_var)

注意的是,单独无脑的加入BN层并不一定会提升模型的效果,这里加入一段对比代码:

def bn_sigmoid():
    torch.manual_seed(929)

    sigmoid_model1 = net_class1(act_fun=torch.sigmoid)
    sigmoid_model_norm = net_class1(act_fun=torch.sigmoid,BN_model='pre')

    model_1 = [sigmoid_model1,sigmoid_model_norm]
    name_1 = ['simoid_model1','sigmoid_model1_norm']

    lr = 0.03
    num_epochs = 40

    train_1,test_1 = utils.model_comparison(model_1=model_1,
                                            name_1=name_1,
                                            train_data=train_loader,
                                            test_data=test_loader,
                                            num_epochs=num_epochs,
                                            criterion=nn.MSELoss(),
                                            optimizer=optim.SGD,
                                            lr=lr,
                                            cla=False,
                                            eva=utils.mse_cla)
    for i,name in enumerate(name_1):
        plt.plot(list(range(num_epochs)),train_1[i],label=name)
    plt.legend(loc=1)
    plt.show()

在上面模型中加入bn层,模型效果反而会变差,此时需要和别的参数进行联合调参,结果:

 

综合调参:

Bach Normalization与Batch_size综合调参

我们首先要明白的一点是,要让模型得到最好的效果其实就是bn层计算出的均值和方差越接近真实的均值和方差,而当面对的数据量(也就是Batch_size)太少的时候,我们用小批数据去估计大的整体就会出现较大的偏差,影响模型准确率。

调大数据数量来对比:

def bn_sigmoid2():
    utils = MyTorchUtils()

    torch.manual_seed(420)

    features,labls = utils.tensorDataGenRe(bag=2,w=[2,-1],bias=False)

    train_loader,test_loader = utils.split_loader(features,labls,batch_size=50)

    sigmoid_model1 = net_class1(act_fun=torch.sigmoid)
    sigmoid_model_norm = net_class1(act_fun=torch.sigmoid,BN_model='pre')

    model_1 = [sigmoid_model1,sigmoid_model_norm]
    name_1 = ['simoid_model1','sigmoid_model1_norm']

    lr = 0.03
    num_epochs = 40

    train_1, test_1 = utils.model_comparison(model_1=model_1,
                                             name_1=name_1,
                                             train_data=train_loader,
                                             test_data=test_loader,
                                             num_epochs=num_epochs,
                                             criterion=nn.MSELoss(),
                                             optimizer=optim.SGD,
                                             lr=lr,
                                             cla=False,
                                             eva=utils.mse_cla)

    for i,name in enumerate(name_1):
        plt.plot(list(range(num_epochs)),train_1[i],label=name)
    plt.legend(loc=1)
    plt.show()

对比上段代码,更改了batch_size,结果如下:

 对比可以发现,调整batch_size后,带bn层的有更快的收敛速度和效果

这里相同的原理,除了提高batch_size外,还可以通过降低momentum参数来实现

复杂模型上Batch_normalization的表现

bn主要的优化手段是通过调整线性层的梯度,使整个模型的梯度达到平稳的状态,来获得更好的效果,所以,在一定范围内,bn方法对于复杂模型和复杂数据会更加有效,很多简单模型可以不用(会增加计算量,所以上述中我们的简单模型优化效果可能不是很明显.

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值