抽象代数(2)

半群和群

介绍:半群理论在20世纪60年代由于它在自动机和形式语言中的应用获得了广泛的重视。而群是抽象代数研究的历史最长和最深入的一类代数系统,群论中的概念和方法是代数研究中的典型方法。

半群的概念

定义1:代数系统 <S,> 称为半群,如果对任意 a,b,cS ,有 (a b)c=(ab)c ; <S,> 称为交换半群,如果对任意的 a,bS ,有 ab=ba .

定义2:若 <S,> 是一个半群,并且存在一个元素 eS ,有

ae=ea=a
<S,e> 称为一个独异点, e 称为单位元.

定理1:一个独异点<S,e>的单位元是唯一的

例:
<Z,+> ( Z 是全体整数集合,+是普通加法)是一个半群,并且 <Z,+0> 是一个独异点.

定义3:一个独异点 <S,e> 被称为循环独异点,如果存在一个元 aS ,使 S 中的每一个元b可表示为

b=aa...a=an(a0=e)
也说 <S,> 由元素 a 生成的,而a称为该循环独异点的生成元.

例:

<{[0],[1],[2],[3]},,[0]> 是一个循环独异点,因为

[2]=[1][1]
[3]=[1][1][1]
[0]=[1][1][1][1]
[1] 是它的生成元.

显然,循环独异点满足交换律,因为对任意 a,bS 都有 n,m ,使

a=an0,b=am0
其中 a0 是生成元,而
ab=an0am0=am0an0=ba

子半群和半群同态

定义4:设 <S,> 是一个半群, <S,> 称为 <S,> 的一个子半群,如果
- SS
- <S,> 是半群

例:
<N,×> (其中 N 是自然数集合,×是普通乘法)是一个半群,设 T={km|kN,m} ,显然 TN,<T,×> <N,×> 的子半群.

定义5:设 <S,> <T,> 是两个半群,若存在一个映射 ϕ:ST ,对任意 a,bS ,都有

ϕ(ab)=ϕ(a)ϕ(b)
则称 ϕ 为一个半群同态.

如果半群同态是一一对应的满同态,则称它为半群同构.

定理2: 设 <S,> 是半群, <T,> 是一个代数系统.若有一同态满射 ϕ:ST ,则 <T,> 也是半群.

定理3:设 <S,> <T,> 半群满同态,则

- 该半群同态保持运算的可交换性
- 单位元的同态象是T中的单位元

商半群和半群直积分

定义6:设 <S> 是一个半群, R 是其上的一个一致关系,则商代数<S/R,/R>
<S> 商半群.

定理5:半群与它的商半群同态.

定义7:设 <S> <T> 是两个半群, <S> <T> 的直积(或笛卡尔乘积)是代数系统

<S×T>
其中 定义为对任意 a,bS,a^,b^T
(a,a^)(b,b^)=(ab,a^b^)

定理6:设 <S> <T> 是两个交换群.

  • <S> <T,> 都是可交换半群,则 <S×T> 也是可交换半群.
  • <S> <T,> 都是以 eS,eT 为单位元的独异点,则 <S×T> 也是独异点,并且它的单位元是 (eS,eT)
  • ZS ZT 分别表示 <S> <T,> 的零元,则 (ZS,ZT) <S×T> 的零元.
  • sS,tT 都有逆元,则 (s1,t1) (s,t) 的逆元.

群的概念

定义8:设 <G×> 是一个代数系统, <G,×> 称为一个群,如果
- 对任意 x,y,zG ,有

x×(y×z)=(x×y)×z
(结合律)
- 存在一个元素 eG ,对任意 xG ,有
x×e=e×x=x
(单位元素)
- 对每一个元素 xG ,存在一个元素 x1G ,使得
x1×x=x×x1=e
(逆元素)

定理7:群的单位元唯一.
定理8:对于群 <G,×> 的每一个元 aG ,只存在唯一的逆元 a1G ,使

a1×a=a×a1=e

定义9:一个群称为有限群,如果它的集合是有限集合.

定义10:一个群称为交换群,如果

a×b=b×a,a,bG

定理9:群 <G,×> 的运算 × 满足:
如果 a×x=a×x,x=x ;
如果 x×a=x×a,x=x ;

子群和群的同态

定义11:设 <G,×> 是一个群, <S,×> 称为 <G×> 的一个子群,如果
- SG ;
- S,× 是一个群.

每一个群 <G,×> 至少有两个子群:
- <|e|,×>
- <G,×>
这两个群称为平凡子群,除平凡子群外其他子群都是真子群.

定理10:群 <G,×> G 的一个非空子集S构成子群 <S,×> 的充分条件是:
- 若 a,bS ,则 a×bS
- 若 aS ,则其相应的逆元 a1S .

定理11:群 <G×> 是一个群, <G^×^> 是一个代数系统,若 <G×> <G^×^> 满同态,则 <G^×^> 也是一个群.

定义12:设 ϕ <G,×> <G^×^> 的一个同态映射, {a|aGϕ(a)=e^} 称为同态核,并记为 ker(ϕ) .

定理13:群 <G,×> <G^×^> 的同态 ϕ 的做成的 <ker(ϕ),×> <G×> 的一个子群.

变换群、置换群循和循环群

定义13:有限集合的一个一一变换称为一个置换,一个有限集合的若干个置换做的群称为置换群.

定理16:每一个有限群都与一个置换群同构.

定义14:若一个群 <G,×> 的每一个元 x 都可以由某一个固定元aG表示为 x=an ,其中 n 是整数,则<G,×>称为循环群, a 称为G的生成元,记为 G=<a> .

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
抽象代数 出版时间:2013年版 丛编项: 高等学校教材 内容简介   《高等学校教材:抽象代数》介绍了抽象代数学中最基本的内容,共4章。第一章介绍了等价关系、分类和代数系统等预备知识,第二章至第四章则分别介绍了群、环、域和伽罗瓦(Galois)理论等。在每一章的末尾,还简述了一些有趣的史料和有关数学家的传记。《高等学校教材:抽象代数》可作为高等学校数学类专业本科高年级学生及研究生的教材,也可作为相关技术人员的参考用书。 目录 第一章 预备知识 第1节 集合与映射 第2节 置换集合S 第3节 等价关系与分类 第4节 代数系统 附录 第二章 群 第1节 群的概念和性质 第2节 子群 第3节 正规子群与商群 第4节 群的同态与同构 第5节 循环群 第6节 群的直积与直和 第7节 群在集合上的作用 第8节 西罗(Sylow)定理 第9节 有限交换群 附录 第三章 环 第1节 环的概念和性质 第2节 无零因子环及其性质 第3节 理想与商环 第4节 环的同态与同构 第5节 极大理想与素理想 第6节 整环的分式化 第7节 唯一分解整环 第8节 多项式环 第9节 多项式环的因子分解 附录 第四章 域 第1节 域的扩张 第2节 单扩张 第3节 有限扩张与代数扩张 第4节 分裂域和正规扩张 第5节 有限域 第6节 伽罗瓦基本定理 第7节 有限可解群 第8节 根式扩张与解方程 第9节 尺规作图 附录 参考文献 名词索引 符号索引

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值