C3 矩阵分析及其应用

1. 矩阵序列

1.1 敛散性

定义: 将矩阵序列 A ( k ) = [ a i j ( k ) ] m × n A^{(k)}=\left[a_{i j}^{(k)}\right]_{m \times n} A(k)=[aij(k)]m×n, 记作 { A ( k ) } \left\{A^{(k)}\right\} {A(k)} lim ⁡ k → ∞ a i j ( k ) = a i j ( ∀ i , j ) \lim _{k \rightarrow \infty} a_{i j}^{(k)}=a_{i j}(\forall i, j) limkaij(k)=aij(i,j) 时, 称矩阵序列 { A ( k ) } \left\{A^{(k)}\right\} {A(k)} 收敛于矩阵 A = ( a i j ) \boldsymbol{A}=\left(a_{i j}\right) A=(aij) 。记作
lim ⁡ k → ∞ A ( k ) = A , 或者  A ( k ) → A ( k → ∞ ) \lim _{k \rightarrow \infty} A^{(k)}=A \text {, 或者 } A^{(k)} \rightarrow A(k \rightarrow \infty) klimA(k)=A或者 A(k)A(k)若数列 ( a i j ( k ) ) \left(a_{i j}^{(k)}\right) (aij(k)) 之一发散, 称 { A ( k ) } \left\{A^{(k)}\right\} {A(k)} 发散

性质:(和、乘积、逆的收敛性一致):
(1) 若 lim ⁡ k → ∞ A ( k ) = A m × n , lim ⁡ k → ∞ B ( k ) = B m × n \lim _{k \rightarrow \infty} A^{(k)}=A_{m \times n}, \lim _{k \rightarrow \infty} B^{(k)}=B_{m \times n} limkA(k)=Am×n,limkB(k)=Bm×n
lim ⁡ k → ∞ ( a A ( k ) + b B ( k ) ) = a A + b B , ∀ a , b \lim _{k \rightarrow \infty}\left(a A^{(k)}+b B^{(k)}\right)=a A+b B, \quad \forall a, b klim(aA(k)+bB(k))=aA+bB,a,b(2) 若 lim ⁡ k → ∞ A ( k ) = A m × n , lim ⁡ k → ∞ B ( k ) = B n × l \lim _{k \rightarrow \infty} A^{(k)}=A_{m \times n}, \lim _{k \rightarrow \infty} B^{(k)}=B_{n \times l} limkA(k)=Am×n,limkB(k)=Bn×l
lim ⁡ k → ∞ ( A ( k ) B ( k ) ) = A B \lim _{k \rightarrow \infty}\left(A^{(k)} B^{(k)}\right)=A B klim(A(k)B(k))=AB(3) 若 A ( k ) A^{(k)} A(k) A A A 是可逆矩阵, 且 lim ⁡ k → ∞ A ( k ) = A \lim _{k \rightarrow \infty} A^{(k)}=A limkA(k)=A, 则
lim ⁡ k → ∞ ( A ( k ) ) − 1 = A − 1 \lim _{k \rightarrow \infty}\left(A^{(k)}\right)^{-1}=A^{-1} klim(A(k))1=A1

1.2 定理1(阐述矩阵序列收敛和矩阵范数之间的关系)

定理1: 设 A ( k ) , A ∈ C m × n A^{(k)}, A \in C^{m \times n} A(k),ACm×n, 则
(1) lim ⁡ k → ∞ A ( k ) = 0    ⟺    ∀ ∥ ∙ ∥ , lim ⁡ k → ∞ ∥ A ( k ) ∥ = 0 \lim _{k \rightarrow \infty} A^{(k)}=0 \iff \forall\|\bullet\|, \lim _{k \rightarrow \infty}\left\|A^{(k)}\right\|=0 limkA(k)=0,limkA(k)=0
(2) lim ⁡ k → ∞ A ( k ) = A    ⟺    ∀ ∥ ∙ ∥ , lim ⁡ k → ∞ ∥ A ( k ) − A ∥ = 0 \lim _{k \rightarrow \infty} A^{(k)}=A \iff \forall\|\bullet\|, \lim _{k \rightarrow \infty}\left\|A^{(k)}-A\right\|=0 limkA(k)=A,limkA(k)A=0

1.3 定理2(阐述收敛矩阵和谱半径之间的关系)

谱半径:对 ∀ A ∈ C n × n \forall A \in C^{n \times n} ACn×n, 谱半径为 ρ ( A ) = max ⁡ i ∣ λ i ∣ \rho(A)=\max _{i}\left|\lambda_{i}\right| ρ(A)=maxiλi
定义: 若 A n × n A_{n \times n} An×n 满足 lim ⁡ k → ∞ A k = 0 n × n \lim _{k \rightarrow \infty} A^{k}=0_{n \times n} limkAk=0n×n, 称 A A A 为收玫矩阵
定理 2: A A A 为收敛矩阵    ⟺    ρ ( A ) < 1 \iff \rho(A)<1 ρ(A)<1

1.4 定理3(阐述收敛矩阵和矩阵范数之间的关系)

定理 3: 若矩阵范数 ∥ ⋅ ∥ M \|\cdot\|_{M} M 使 ∥ A ∥ M < 1 \|A\|_{M}<1 AM<1, 则 A k → 0 \boldsymbol{A}^{k} \rightarrow \mathbf{0} Ak0
证明: ρ ( A ) ≤ ∥ A ∥ M < 1 ⇒ A k → 0 \quad \rho(A) \leq\|A\|_{M}<1 \Rightarrow A^{k} \rightarrow 0 ρ(A)AM<1Ak0

2. 矩阵级数

定义: 设有矩阵序列 { A ( k ) } \left\{A^{(k)}\right\} {A(k)}, 其中 A ( k ) = [ a i j ( k ) ] ∈ C m × n A^{(k)}=\left[a_{i j}^{(k)}\right] \in C^{m \times n} A(k)=[aij(k)]Cm×n A ( 0 ) + A ( 1 ) + ⋯ + A ( k ) + ⋯ A^{(0)}+A^{(1)}+\cdots+A^{(k)}+\cdots A(0)+A(1)++A(k)+ 为矩阵级数。记为 ∑ k = 0 ∞ A ( k ) \sum_{k=0}^{\infty} A^{(k)} k=0A(k) 部分和 S ( N ) = ∑ k = 0 N A ( k ) S^{(N)}=\sum_{k=0}^{N} A^{(k)} S(N)=k=0NA(k) 构成矩阵序列 { S ( N ) } \left\{S^{(N)}\right\} {S(N)}

2.1 敛散性

定义:
lim ⁡ N → ∞ S ( N ) = S \lim _{N \rightarrow \infty} S^{(N)}=S limNS(N)=S, 称 ∑ A ( k ) \sum A^{(k)} A(k) 收敛于 S S S, 记做 ∑ A ( k ) = S \sum A^{(k)}=S A(k)=S
{ S ( N ) } \left\{S^{(N)}\right\} {S(N)} 发散, 称 ∑ A ( k ) \sum A^{(k)} A(k) 发散

性质:

  1. ∑ A ( k ) = S    ⟺    ∑ k = 0 ∞ a i j ( k ) = s i j (  all  i , j ) \sum A^{(k)}=S \iff \sum_{k=0}^{\infty} a_{i j}^{(k)}=s_{i j}\left(\begin{array}{ll}\text { all } & i, j)\end{array}\right. A(k)=Sk=0aij(k)=sij( all i,j)
  2. ∑ ∣ a i j ( k ) ∣ \sum\left|a_{i j}^{(k)}\right| aij(k) 收敛 ( a l l i , j ) (a l l \quad i, j) (alli,j), 称 ∑ A ( k ) \sum A^{(k)} A(k) 绝对收敛。

(1) ∑ A ( k ) \sum A^{(k)} A(k) 绝对收敛 ⇒ ∑ A ( k ) \Rightarrow \sum A^{(k)} A(k) 收敛
(2) 若 ∑ A ( k ) \sum A^{(k)} A(k) 绝对收敛于 S S S, 对 ∑ A ( k ) \sum A^{(k)} A(k) 任意重组重排得 ∑ B ( k ) \sum B^{(k)} B(k), 则 ∑ B ( k ) \sum B^{(k)} B(k) 绝对收敛于 S S S

  1. ∑ A ( k ) = S \sum A^{(k)}=S A(k)=S 绝对收敛 ⇔ ∀ ∥ ⋅ ∥ , ∑ ∥ A ( k ) ∥ \Leftrightarrow \forall\|\cdot\|, \sum\left\|A^{(k)}\right\| ,A(k) 收敛
  2. ∑ A ( k ) \sum A^{(k)} A(k) 收敛于 S ⇒ ∑ k = 0 ∞ P A ( k ) Q S \Rightarrow \sum_{k=0}^{\infty} P A^{(k)} Q Sk=0PA(k)Q 收敛于 P S Q P S Q PSQ
    ∑ A ( k ) \sum A^{(k)} A(k) 绝对收敛 ⇒ ∑ k = 0 ∞ P A ( k ) Q \Rightarrow \sum_{k=0}^{\infty} P A^{(k)} Q k=0PA(k)Q 绝对收敛
  3. ∑ k = 1 ∞ A ( k ) \sum_{k=1}^{\infty} A^{(k)} k=1A(k) 绝对收敛于 S m x x , ∑ k = 1 ∞ B ( k ) S_{m x x}, \sum_{k=1}^{\infty} B^{(k)} Smxx,k=1B(k) 绝对收玫于 T n x l T_{n x l} Tnxl
    则Cauchy积 A ( 1 ) B ( 1 ) + [ A ( 1 ) B ( 2 ) + A ( 2 ) B ( 1 ) ] + [ A ( 1 ) B ( 3 ) + A ( 2 ) B ( 2 ) + A ( 3 ) B ( 1 ) ] A^{(1)} B^{(1)}+\left[A^{(1)} B^{(2)}+A^{(2)} B^{(1)}\right]+\left[A^{(1)} B^{(3)}+A^{(2)} B^{(2)}+A^{(3)} B^{(1)}\right] A(1)B(1)+[A(1)B(2)+A(2)B(1)]+[A(1)B(3)+A(2)B(2)+A(3)B(1)] + ⋯ + [ A ( 1 ) B ( k ) + A ( 2 ) B ( k − 1 ) + ⋯ + A ( k ) B ( 1 ) ] + ⋯ +\cdots+\left[A^{(1)} B^{(k)}+A^{(2)} B^{(k-1)}+\cdots+A^{(k)} B^{(1)}\right]+\cdots ++[A(1)B(k)+A(2)B(k1)++A(k)B(1)]+
    绝对收敛于 S T S T ST, 记作 ∑ A ( k ) ⋅ ∑ B ( k ) = S T \sum A^{(k)} \cdot \sum B^{(k)}=S T A(k)B(k)=ST

2.2 Neumann级数

定义: A n × n , ∑ k = 0 ∞ A k , ( A 0 = I ) A_{n \times n}, \sum_{k=0}^{\infty} A^{k},\left(A^{0}=I\right) An×n,k=0Ak,(A0=I)

性质: A n × n A_{n \times n} An×n

  1. ∑ A k \sum A^{k} Ak收敛 ⇔ A k → 0 ∑ A k \Leftrightarrow A^{k} \rightarrow 0 \\ \sum A^{k} Ak0Ak收敛时, 其和为 ( I − A ) − 1 (I-A)^{-1} (IA)1
  2. ∥ A ∥ < 1 ⇒ ∥ ( I − A ) − 1 − ∑ k = 0 N A k ∥ ≤ ∥ A ∥ N + 1 1 − ∥ A ∥ , N = 0 , 1 , 2 \|A\|<1 \Rightarrow\left\|(I-A)^{-1}-\sum_{k=0}^{N} A^{k}\right\| \leq \frac{\|A\|^{N+1}}{1-\|A\|}, N=0,1,2 A<1(IA)1k=0NAk1AAN+1,N=0,1,2

2.3 幂级数

幂级数: 对函数 f ( z ) = ∑ c k z k , ( ∣ z ∣ < r ) f(z)=\sum c_{k} z^{k},(|z|<r) f(z)=ckzk,(z<r) 方阵 A n × n A_{n \times n} An×n, 构造矩阵幕级数 f ( A ) = ∑ c k A k f(A)=\sum c_{k} A^{k} f(A)=ckAk
谱半径:对 ∀ A ∈ C n × n \forall A \in C^{n \times n} ACn×n, 谱半径为 ρ ( A ) = max ⁡ i ∣ λ i ∣ \rho(A)=\max_{i}\left|\lambda_{i}\right| ρ(A)=maxiλi
定理 6 :
(1) ρ ( A ) < r ⇒ ∑ c k A k \rho(A)<r \Rightarrow \sum c_{k} A^{k} ρ(A)<rckAk 绝对收敛
(2) ρ ( A ) > r ⇒ ∑ c k A k \rho(A)>r \Rightarrow \sum c_{k} A^{k} ρ(A)>rckAk 发散

2.4 代入规则

性质(代入规则): 若 f ( z ) = g ( z ) f(z)=g(z) f(z)=g(z), 则 f ( A ) = g ( A ) f(A)=g(A) f(A)=g(A).

设一元函数 f ( z ) f(z) f(z) 能展开为 z z z 的幕级数
f ( z ) = ∑ k = 0 ∞ c k z k ( ∣ z ∣ < r , r > 0 ) f(z)=\sum_{k=0}^{\infty} c_{k} z^{k} \quad(|z|<r, r>0) f(z)=k=0ckzk(z<r,r>0)其中 r > 0 r>0 r>0 表示该幂级数的收敛半径。当 n \mathrm{n} n 阶矩阵 A \mathrm{A} A 的 谱半径 ρ ( A ) < r \rho(A)<r ρ(A)<r 时, 把收玫的矩阵幂级数 ∑ k = 0 ∞ c k A k \sum_{k=0}^{\infty} c_{k} A^{k} k=0ckAk 的和 为 f (   A ) f(\mathrm{~A}) f( A), 即 f ( A ) = ∑ k = 0 ∞ c k A k f(A)=\sum_{k=0}^{\infty} c_{k} A^{k} f(A)=k=0ckAk

2.5 级数展开式

e z = 1 + 1 1 ! z + ⋯ + 1 k ! z k + ⋯ ( r = + ∞ ) e^{z}=1+\frac{1}{1 !} z+\cdots+\frac{1}{k !} z^{k}+\cdots \quad(r=+\infty) ez=1+1!1z++k!1zk+(r=+)
e A = I + 1 1 ! A + ⋯ + 1 k ! A k + ⋯ ( ∀ A n × n ) e^{A}=I+\frac{1}{1 !} A+\cdots+\frac{1}{k !} A^{k}+\cdots \quad\left(\forall A_{n \times n}\right) eA=I+1!1A++k!1Ak+(An×n)
sin ⁡ z = z − 1 3 ! z 3 + ⋯ + ( − 1 ) k 1 ( 2 k + 1 ) ! z ( 2 k + 1 ) + ⋯ ( r = + ∞ ) \sin z=z-\frac{1}{3 !} z^{3}+\cdots+(-1)^{k} \frac{1}{(2 k+1) !} z^{(2 k+1)}+\cdots \quad(r=+\infty) sinz=z3!1z3++(1)k(2k+1)!1z(2k+1)+(r=+)
sin ⁡ A = A − 1 3 ! A 3 + ⋯ + ( − 1 ) k 1 ( 2 k + 1 ) ! A ( 2 k + 1 ) + ⋯ ( ∀ A n × n ) \sin A=A-\frac{1}{3 !} A^{3}+\cdots+(-1)^{k} \frac{1}{(2 k+1) !} A^{(2 k+1)}+\cdots \quad\left(\forall A_{n \times n}\right) sinA=A3!1A3++(1)k(2k+1)!1A(2k+1)+(An×n)
1 1 − z = ∑ k = 0 ∞ z k ( ∣ z ∣ < 1 ) \frac{1}{1-z}=\sum_{k=0}^{\infty} z^{k} \quad(|z|<1) 1z1=k=0zk(z<1)
1 I − A = ∑ k = 0 ∞ A k ( ρ ( A ) < 1 ) \frac{1}{I-A}=\sum_{k=0}^{\infty} A^{k} \quad(\rho(A)<1) IA1=k=0Ak(ρ(A)<1)

2.6 定理7

一般来说, e A + B ≠ e A e B ≠ e B e A e^{A+B} \neq e^{A} e^{B} \neq e^{B} e^{A} eA+B=eAeB=eBeA
A n × n , B n × n , A B = B A ⇒ e A + B = e A e B = e B e A A_{n \times n}, B_{n \times n}, A B=B A \Rightarrow e^{A+B}=e^{A} e^{B}=e^{B} e^{A} An×n,Bn×n,AB=BAeA+B=eAeB=eBeA

3. 矩阵函数(以矩阵为自变量且取值为矩阵的一类函数)

3.1 矩阵函数值的求法——待定系数法

例6: A = [ 2 0 0 1 1 1 1 − 1 3 ] , A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 3\end{array}\right], \quad A=211011013, e A , e t A ( t ∈ R ) e^{A}, e^{t A} \quad(t \in R) eA,etA(tR)

第一步:
φ ( λ ) = det ⁡ ( λ I − A ) = ( λ − 2 ) 3 \varphi(\lambda)=\operatorname{det}(\lambda I-A)=(\lambda-2)^{3} φ(λ)=det(λIA)=(λ2)3
( A − 2 I ) = [ 0 0 0 1 − 1 1 1 − 1 1 ] , ( A − 2 I ) 2 = O (A-2 I)=\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & 1\end{array}\right],(A-2 I)^{2}=O (A2I)=011011011,(A2I)2=O
ψ ( λ ) = m ( λ ) = ( λ − 2 ) 2 , ψ ( λ ) 为 首 一 多 项 式 且 可 被 det ⁡ ( λ I − A ) 整 除 且 是 J o r d a n 中 的 最 高 次 \psi(\lambda)=m(\lambda)=(\lambda-2)^{2},\psi(\lambda)为首一多项式且可被\operatorname{det}(\lambda I-A)整除且是Jordan中的最高次 ψ(λ)=m(λ)=(λ2)2ψ(λ)det(λIA)Jordan
第二步:
(1) f ( λ ) = e λ = ψ ( λ ) g ( λ ) + ( a + b λ ) , 其 中 f ( λ i ) = ∑ c k λ i k 绝 对 收 敛 f(\lambda)=e^{\lambda}=\psi(\lambda) g(\lambda)+(a+b \lambda),其中f\left(\lambda_{i}\right)=\sum c_{k} \lambda_{i}^{k}绝对收敛 f(λ)=eλ=ψ(λ)g(λ)+(a+bλ)f(λi)=ckλik
f ′ ( λ ) = e λ = [ ψ ( λ ) g ( λ ) ] ′ + b f^{\prime}(\lambda)=e^{\lambda}=[\psi(\lambda) g(\lambda)]^{\prime}+b f(λ)=eλ=[ψ(λ)g(λ)]+b
f ( 2 ) = e 2 : ( a + 2 b ) = e 2 f ′ ( 2 ) = e 2 : b = e 2 } { a = − e 2 b = e 2 \left.\begin{array}{rl}f(2)=e^{2}: & (a+2 b)=e^{2} \\ f^{\prime}(2)=e^{2}: & b=e^{2}\end{array}\right\} \quad\left\{\begin{array}{l}a=-e^{2} \\ b=e^{2}\end{array}\right. f(2)=e2:f(2)=e2:(a+2b)=e2b=e2}{a=e2b=e2
e A = e 2 ( A − I ) = e 2 [ 1 0 0 1 0 1 1 − 1 2 ] e^{A}=e^{2}(A-I)=e^{2}\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 2\end{array}\right] eA=e2(AI)=e2111001012

3.2 数项级数求和法

例7: A = [ π 0 0 0 − π 0 0 0 1 0 ] A=\left[\begin{array}{cccc}\pi & 0 & 0 & 0 \\ & -\pi & 0 & 0 \\ & & 0 & 1 \\ & & & 0\end{array}\right] A=π0π0000010, 求 sin ⁡ A \sin A sinA

解: φ ( λ ) = ∣ λ I − A ∣ = λ 4 − π 2 λ 2 \varphi(\lambda)=|\lambda I-A|=\lambda^{4}-\pi^{2} \lambda^{2} φ(λ)=λIA=λ4π2λ2, 取 ψ ( λ ) = φ ( λ ) \psi(\lambda)=\varphi(\lambda) ψ(λ)=φ(λ) ψ ( A ) = 0 ⇒ A 4 = π 2 A 2 , A 5 = π 2 A 3 , A 7 = π 4 A 3 , ⋯ \psi(A)=0 \Rightarrow A^{4}=\pi^{2} A^{2}, A^{5}=\pi^{2} A^{3}, A^{7}=\pi^{4} A^{3}, \cdots ψ(A)=0A4=π2A2,A5=π2A3,A7=π4A3, sin ⁡ A = A − 1 3 ! A 3 + 1 5 ! A 5 − 1 7 ! A 7 + ⋯ \sin A=A-\frac{1}{3 !} A^{3}+\frac{1}{5 !} A^{5}-\frac{1}{7 !} A^{7}+\cdots sinA=A3!1A3+5!1A57!1A7+ = A + [ − 1 3 ! + π 2 5 ! − π 4 7 ! + ⋯   ] A 3 = A + 1 π 3 [ sin ⁡ π − π ] A 3 = A − 1 π 2 A 3 = [ 0 0 0 0 0 0 0 0 1 0 ] ∵ A 3 = diag ⁡ ( π 3 , − π 3 , 0 , 0 ) \begin{aligned}=& A+\left[-\frac{1}{3 !}+\frac{\pi^{2}}{5 !}-\frac{\pi^{4}}{7 !}+\cdots\right] A^{3} \\=& A+\frac{1}{\pi^{3}}[\sin \pi-\pi] A^{3}=A-\frac{1}{\pi^{2}} A^{3}=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ & 0 & 0 & 0 \\ & & 0 & 1 \\ & & & 0\end{array}\right] \\ & \because A^{3}=\operatorname{diag}\left(\pi^{3},-\pi^{3}, 0,0\right) \end{aligned} ==A+[3!1+5!π27!π4+]A3A+π31[sinππ]A3=Aπ21A3=0000000010A3=diag(π3,π3,0,0)

3.3 对角阵法

P − 1 A P = diag ⁡ ( λ 1 , ⋯   , λ n ) = Λ P^{-1} A P=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)=\Lambda P1AP=diag(λ1,,λn)=Λ, 则 A k = P Λ k P − 1 A^{k}=P \Lambda^{k} P^{-1} Ak=PΛkP1
f ( A ) = ∑ k = 0 ∞ c k A k = P ⋅ diag ⁡ ( f ( λ 1 ) , ⋯   , f ( λ n ) ) ⋅ P − 1 f(A)=\sum_{k=0}^{\infty} c_{k} A^{k}=P \cdot \operatorname{diag}\left(f\left(\lambda_{1}\right), \cdots, f\left(\lambda_{n}\right)\right) \cdot P^{-1} f(A)=k=0ckAk=Pdiag(f(λ1),,f(λn))P1

3.4 Jordan标准形法

在这里插入图片描述

4. 矩阵函数利用Jordan标准形进行定义

P − 1 A P = J = diag ⁡ ( J 1 , ⋯   , J s ) , J i = λ i I + I ( 1 ) P^{-1} A P=J=\operatorname{diag}\left(J_{1}, \cdots, J_{s}\right), J_{i}=\lambda_{i} I+I^{(1)} P1AP=J=diag(J1,,Js),Ji=λiI+I(1)
  如果 f ( z ) f(z) f(z) λ i \lambda_{i} λi 处有 m i − 1 m_{i}-1 mi1 阶导数, 令
   f ( J i ) = ∑ k = 0 ∞ c k J i k = f ( λ i ) I + f ′ ( λ i ) 1 ! I ( 1 ) + ⋯ + f ( m i − 1 ) ( λ i ) ( m i − 1 ) ! I ( m i − 1 ) f\left(J_{i}\right)=\sum_{k=0}^{\infty} c_{k} J_{i}^{k}=f\left(\lambda_{i}\right) I+\frac{f^{\prime}\left(\lambda_{i}\right)}{1 !} I^{(1)}+\cdots+\frac{f^{\left(m_{i}-1\right)}\left(\lambda_{i}\right)}{\left(m_{i}-1\right) !} I^{\left(m_{i}-1\right)} f(Ji)=k=0ckJik=f(λi)I+1!f(λi)I(1)++(mi1)!f(mi1)(λi)I(mi1)
   f ( A ) = ∑ k = 0 ∞ c k A k = P ⋅ ∑ k = 0 ∞ c k J k ⋅ P − 1 = P ⋅ diag ⁡ ( f ( J 1 ) , ⋯   , f ( J s ) ) ⋅ P − 1 f(A)=\sum_{k=0}^{\infty} c_{k} A^{k}=P \cdot \sum_{k=0}^{\infty} c_{k} J^{k} \cdot P^{-1}=P \cdot \operatorname{diag}\left(f\left(J_{1}\right), \cdots, f\left(J_{s}\right)\right) \cdot P^{-1} f(A)=k=0ckAk=Pk=0ckJkP1=Pdiag(f(J1),,f(Js))P1
f ( A ) f(A) f(A) 为对应于 f ( z ) f(z) f(z) 的矩阵函数

在这里插入图片描述

例题:
A = [ 2 1 2 1 2 1 2 ] , f ( z ) = 1 z A=\left[\begin{array}{llll}2 & 1 & & \\ & 2 & 1 & \\ & & 2 & 1 \\ & & & 2\end{array}\right], f(z)=\frac{1}{z} A=2121212,f(z)=z1, 求 f ( A ) f(A) f(A)
A = [ 1 1 0 0 1 0 0 0 2 ] , f ( z ) = z A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right], f(z)=\sqrt{z} A=100110002,f(z)=z , 求 f ( A ) f(A) f(A)
步骤:
先求矩阵的Jordan型,需要jordan矩阵和P( P − 1 A P = J = diag ⁡ ( J 1 , ⋯   , J s ) P^{-1} A P=J=\operatorname{diag}\left(J_{1}, \cdots, J_{s}\right) P1AP=J=diag(J1,,Js)
再套公式求 f ( J i ) = f ( λ i ) I + f ′ ( λ i ) 1 ! I ( 1 ) + ⋯ + f ( m i − 1 ) ( λ i ) ( m i − 1 ) ! I ( m i − 1 ) f\left(J_{i}\right)=f\left(\lambda_{i}\right) I+\frac{f^{\prime}\left(\lambda_{i}\right)}{1 !} I^{(1)}+\cdots+\frac{f^{\left(m_{i}-1\right)}\left(\lambda_{i}\right)}{\left(m_{i}-1\right) !} I^{\left(m_{i}-1\right)} f(Ji)=f(λi)I+1!f(λi)I(1)++(mi1)!f(mi1)(λi)I(mi1)
最后 f ( A ) = P ⋅ diag ⁡ ( f ( J 1 ) , ⋯   , f ( J s ) ) ⋅ P − 1 f(A)=P \cdot \operatorname{diag}\left(f\left(J_{1}\right), \cdots, f\left(J_{s}\right)\right) \cdot P^{-1} f(A)=Pdiag(f(J1),,f(Js))P1

5. 矩阵函数的性质

  1. f ( z ) = f 1 ( z ) + f 2 ( z ) ⇒ f ( A ) = f 1 ( A ) + f 2 ( A ) f(z)=f_{1}(z)+f_{2}(z) \Rightarrow f(A)=f_{1}(A)+f_{2}(A) f(z)=f1(z)+f2(z)f(A)=f1(A)+f2(A)
  2. f ( z ) = f 1 ( z ) ∙ f 2 ( z ) ⇒ f ( A ) = f 1 ( A ) ∙ f 2 ( A ) = f 2 ( A ) ⋅ f 1 ( A ) f(z)=f_{1}(z) \bullet f_{2}(z)\Rightarrow f(A)=f_{1}(A) \bullet f_{2}(A)=f_{2}(A) \cdot f_{1}(A) f(z)=f1(z)f2(z)f(A)=f1(A)f2(A)=f2(A)f1(A)

6. 矩阵的微分和积分(对自变量)

微分定义:
  如果矩阵 A ( t ) = ( a i j ( t ) ) m × n A(t)=\left(a_{i j}(t)\right)_{m \times n} A(t)=(aij(t))m×n, 的每一个元素 a i j ( t ) a_{i j}(t) aij(t) 是变量 t t t 的可微函数, 则 A ( t ) A(t) A(t) 关于 t t t 的导数 (微商) 定义为 d A ( t ) d t = ( a i j ′ ( t ) ) m × n \frac{d A(t)}{d t}=\left(a_{i j}^{\prime}(t)\right)_{m \times n} dtdA(t)=(aij(t))m×n, 或者 A ′ ( t ) = ( a i j ′ ( t ) ) m × n A^{\prime}(t)=\left(a_{i j}^{\prime}(t)\right)_{m \times n} A(t)=(aij(t))m×n

微分性质:
定理8: 设 A ( t ) , B ( t ) \boldsymbol{A}(\boldsymbol{t}), \boldsymbol{B}(\boldsymbol{t}) A(t),B(t) 可导, 则有
(1) d d t [ A ( t ) + B ( t ) ] = d d t A ( t ) + d d t B ( t ) \frac{d}{d t}[A(t)+B(t)]=\frac{d}{d t} A(t)+\frac{d}{d t} B(t) dtd[A(t)+B(t)]=dtdA(t)+dtdB(t)
(2) A m × n , f ( t ) A_{m \times n}, f(t) Am×n,f(t) 可导 d d t [ f ( t ) A ( t ) ] = f ′ ( t ) A ( t ) + f ( t ) A ′ ( t ) \frac{d}{d t}[f(t) A(t)]=f^{\prime}(t) A(t)+f(t) A^{\prime}(t) dtd[f(t)A(t)]=f(t)A(t)+f(t)A(t)
(3) A m × n , B n × l : d d t [ A ( t ) B ( t ) ] = A ′ ( t ) B ( t ) + A ( t ) B ′ ( t ) A_{m \times n}, B_{n \times l}: \frac{d}{d t}[A(t) B(t)]=A^{\prime}(t) B(t)+A(t) B^{\prime}(t) Am×n,Bn×l:dtd[A(t)B(t)]=A(t)B(t)+A(t)B(t)
定理9: 设 A n × n A_{n \times n} An×n 为常数矩阵, 则有
(1) d d t e t A = A e t A = e t A A \frac{d}{d t} e^{t A}=A e^{t A}=e^{t A} A dtdetA=AetA=etAA
(2) d d t cos ⁡ ( t A ) = − A ⋅ sin ⁡ ( t A ) = − sin ⁡ ( t A ) ⋅ A \frac{d}{d t} \cos (t A)=-A \cdot \sin (t A)=-\sin (t A) \cdot A dtdcos(tA)=Asin(tA)=sin(tA)A
(3) d d t sin ⁡ ( t A ) = A ⋅ cos ⁡ ( t A ) = cos ⁡ ( t A ) ⋅ A \frac{d}{d t} \sin (t A)=A \cdot \cos (t A)=\cos (t A) \cdot A dtdsin(tA)=Acos(tA)=cos(tA)A

积分定义:
  如果矩阵 A ( t ) = ( a i j ( t ) ) m × n A(t)=\left(a_{i j}(t)\right)_{m \times n} A(t)=(aij(t))m×n 的每一个元素 a i j ( t ) a_{i j}(t) aij(t) [ t 0 , t ] \left[t_{0}, t\right] [t0,t] 上可积, 称 A ( t ) A(t) A(t) 可积, 记为 ∫ t 0 t A ( τ ) d τ = ( ∫ t 0 t a i j ( τ ) d τ ) m × n \int_{t_{0}}^{t} A(\tau) d \tau=\left(\int_{t_{0}}^{t} a_{i j}(\tau) d \tau\right)_{m \times n} t0tA(τ)dτ=(t0taij(τ)dτ)m×n
积分性质:
(1) ∫ t 0 t [ A ( τ ) + B ( τ ) ] d τ = ∫ t 0 t A ( τ ) d τ + ∫ t 0 t B ( τ ) d τ \int_{t_{0}}^{t}[A(\tau)+B(\tau)] d \tau=\int_{t_{0}}^{t} A(\tau) d \tau+\int_{t_{0}}^{t} B(\tau) d \tau t0t[A(τ)+B(τ)]dτ=t0tA(τ)dτ+t0tB(τ)dτ
(2) A A A 为常数矩阵: ∫ t 0 t [ A ∙ B ( τ ) ] d τ = A ⋅ [ ∫ t 0 t B ( τ ) d τ ] \int_{t_{0}}^{t}[A \bullet B(\tau)] d \tau=A \cdot\left[\int_{t_{0}}^{t} B(\tau) d \tau\right] t0t[AB(τ)]dτ=A[t0tB(τ)dτ]
B B B 为常数矩阵: ∫ t 0 t [ A ( τ ) ⋅ B ] d τ = [ ∫ t 0 t A ( τ ) d τ ] ⋅ B \int_{t_{0}}^{t}[A(\tau) \cdot B] d \tau=\left[\int_{t_{0}}^{t} A(\tau) d \tau\right] \cdot B t0t[A(τ)B]dτ=[t0tA(τ)dτ]B
(3) 设 a i j ( t ) ∈ C [ t 0 , t 1 ] a_{i j}(t) \in C\left[t_{0}, t_{1}\right] aij(t)C[t0,t1] 则: d d t ∫ t 0 t A ( τ ) d τ = A ( t ) \frac{d}{d t} \int_{t_{0}}^{t} A(\tau) d \tau=A(t) dtdt0tA(τ)dτ=A(t)
(4) 设 a i j ′ ( t ) ∈ C [ t 0 , t 1 ] a_{i j}^{\prime}(t) \in C\left[t_{0}, t_{1}\right] aij(t)C[t0,t1], 则: ∫ t 0 t 1 A ′ ( τ ) d τ = A ( t 1 ) − A ( t 0 ) \int_{t_{0}}^{t_{1}} A^{\prime}(\tau) d \tau=A\left(t_{1}\right)-A\left(t_{0}\right) t0t1A(τ)dτ=A(t1)A(t0)

7. 函数对矩阵的导数(包括向量)

定义: 设 X = ( ξ i j ) m × n , m n X=\left(\xi_{i j}\right)_{m \times n}, m n X=(ξij)m×n,mn 元函数
f ( X ) = f ( ξ 11 , ξ 12 , ⋯   , ξ 1 n , ⋯   , ξ m × n ) f(X)=f\left(\xi_{11}, \xi_{12}, \cdots, \xi_{1 n}, \cdots, \xi_{m \times n}\right) f(X)=f(ξ11,ξ12,,ξ1n,,ξm×n)
定义 f ( X ) f(X) f(X) 对矩阵 X X X 的导数为
d f d X = ( ∂ f ∂ ξ i j ) m × n = [ ∂ f ∂ ξ 11 ⋯ ∂ f ∂ ξ 1 n ⋮ ⋮ ∂ f ∂ ξ m 1 ⋯ ∂ f ∂ ξ m n ] \frac{d f}{d X}=\left(\frac{\partial f}{\partial \xi_{i j}}\right)_{m \times n}=\left[\begin{array}{ccc} \frac{\partial f}{\partial \xi_{11}} & \cdots & \frac{\partial f}{\partial \xi_{1 n}} \\ \vdots & & \vdots \\ \frac{\partial f}{\partial \xi_{m 1}} & \cdots & \frac{\partial f}{\partial \xi_{m n}} \end{array}\right] dXdf=(ξijf)m×n=ξ11fξm1fξ1nfξmnf

8. 函数矩阵对矩阵的导数

定义:
X = ( ξ i j ) m × n , f k l ( X ) = f k l ( ξ 11 , ξ 12 , ⋯   , ξ 1 n , ⋯   , ξ m × n ) X=\left(\xi_{i j}\right)_{m \times n}, f_{k l}(X)=f_{k l}\left(\xi_{11}, \xi_{12}, \cdots, \xi_{1 n}, \cdots, \xi_{m \times n}\right) X=(ξij)m×n,fkl(X)=fkl(ξ11,ξ12,,ξ1n,,ξm×n)
F = [ f 11 ⋯ f 1 s ⋮ ⋮ f r 1 ⋯ f r s ] , ∂ F ∂ ξ i j = [ ∂ f 11 ∂ ξ i j ⋯ ∂ f 1 s ∂ ξ i j ⋮ ⋮ ∂ f r 1 ∂ ξ i j ⋯ ∂ f r s ∂ ξ i j ] \boldsymbol{F}=\left[\begin{array}{ccc}f_{11} & \cdots & f_{1 s} \\ \vdots & & \vdots \\ f_{r 1} & \cdots & f_{r s}\end{array}\right], \quad \frac{\partial F}{\partial \xi_{i j}}=\left[\begin{array}{ccc}\frac{\partial f_{11}}{\partial \xi_{i j}} & \cdots & \frac{\partial f_{1 s}}{\partial \xi_{i j}} \\ \vdots & & \vdots \\ \frac{\partial f_{r 1}}{\partial \xi_{i j}} & \cdots & \frac{\partial f_{r s}}{\partial \xi_{i j}}\end{array}\right] F=f11fr1f1sfrs,ξijF=ξijf11ξijfr1ξijf1sξijfrs
则:
d F d X = ( 1 d X ) ⊗ d F = [ ∂ F ∂ ξ 11 ⋯ ∂ F ∂ ξ 1 n ⋮ ⋮ ∂ F ∂ ξ m 1 ⋯ ∂ F ∂ ξ m n ] \frac{d F}{d X}=\left(\frac{1}{d X}\right) \otimes d F=\left[\begin{array}{ccc} \frac{\partial F}{\partial \xi_{11}} & \cdots & \frac{\partial F}{\partial \xi_{1 n}} \\ \vdots & & \vdots \\ \frac{\partial F}{\partial \xi_{m 1}} & \cdots & \frac{\partial F}{\partial \xi_{m n}} \end{array}\right] dXdF=(dX1)dF=ξ11Fξm1Fξ1nFξmnF

9. 转换定理

X m × n = [ x i j ] , Y p × q = [ y i j ] X_{m \times n}=\left[x_{i j}\right], Y_{p \times q}=\left[y_{i j}\right] Xm×n=[xij],Yp×q=[yij] 矩阵 A p × m , B n × q , C p × n , D m × q A_{p \times m}, B_{n \times q}, C_{p \times n}, D_{m \times q} Ap×m,Bn×q,Cp×n,Dm×q X X X 的函数, 则下列两条等价
(1) ∂ Y ∂ x i j = A E i j B + C E i j T D , i = 1 , … , m ; j = 1 , … , n ; E i j ∈ R m × n \frac{\partial Y}{\partial x_{i j}}=A E_{i j} B+C E_{i j}^{T} D, \quad i=1, \ldots, m ; j=1, \ldots, n ; E_{i j} \in R^{m \times n} xijY=AEijB+CEijTD,i=1,,m;j=1,,n;EijRm×n
(2) d y i j d X = A T E i j B T + D E i j T C , i = 1 , … , p ; j = 1 , … , q ; E i j ∈ R p × q \frac{d y_{i j}}{d X}=A^{T} E_{i j} B^{T}+D E_{i j}^{T} C, \quad i=1, \ldots, p ; j=1, \ldots, q ; E_{i j} \in R^{p \times q} dXdyij=ATEijBT+DEijTC,i=1,,p;j=1,,q;EijRp×q

10. 矩阵分析的应用

例21:
A = [ 1 1 0 1 0 2 ] A=\left[\begin{array}{lll}1 & 1 & 0 \\ & 1 & 0 \\ & & 2\end{array}\right] A=111002 x ′ ( t ) = A ∙ x ( t ) x^{\prime}(t)=A \bullet x(t) x(t)=Ax(t) 的通解

解: e t A = [ e t t e t 0 e t 0 e 2 t ] e^{t A}=\left[\begin{array}{ccc}e^{t} & t e^{t} & 0 \\ & e^{t} & 0 \\ & & e^{2 t}\end{array}\right] etA=ettetet00e2t
x ( t ) = e t A c = [ c 1 e t + c 2 t e t c 2 e t c 3 e 2 t ] x(t)=e^{t A} c=\left[\begin{array}{c} c_{1} e^{t}+c_{2} t e^{t} \\ c_{2} e^{t} \\ c_{3} e^{2 t} \end{array}\right] x(t)=etAc=c1et+c2tetc2etc3e2t

例22:
矩阵函数 e t A e^{t A} etA 的列向量 x 1 ( t ) , ⋯   , x n ( t ) x_{1}(t), \cdots, x_{n}(t) x1(t),,xn(t) 构成 齐次方程 x ′ ( t ) = A ∙ x ( t ) x^{\prime}(t)=A \bullet x(t) x(t)=Ax(t) 的基础解系
解: e t A  可逆  ⇒ x 1 ( t ) , ⋯   , x n ( t ) e^{t A \text { 可逆 }} \Rightarrow x_{1}(t), \cdots, x_{n}(t) etA 可逆 x1(t),,xn(t) 线性无关
c = e j ⇒ x j ( t ) = e t A c c=e_{j} \Rightarrow x_{j}(t)=e^{t A} c c=ejxj(t)=etAc x ′ ( t ) = A ⋅ x ( t ) x^{\prime}(t)=A \cdot x(t) x(t)=Ax(t) 的一个解
通解 x ( t ) = e t A c = c 1 ∙ x 1 ( t ) + ⋯ + c n ⋅ x n ( t ) x(t)=e^{t A} c=c_{1} \bullet x_{1}(t)+\cdots+c_{n} \cdot x_{n}(t) x(t)=etAc=c1x1(t)++cnxn(t)

例23: 设 A = [ 1 1 0 1 0 2 ] , b ( t ) = [ 1 0 e 2 t ] , x ( 0 ) = [ − 1 1 0 ] A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 \\ & 2\end{array}\right], b(t)=\left[\begin{array}{c}1 \\ 0 \\ e^{2 t}\end{array}\right], x(0)=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right] A=111020,b(t)=10e2t,x(0)=110 x ′ ( t ) = A ⋅ x ( t ) + b ( t ) x^{\prime}(t)=A \cdot x(t)+b(t) x(t)=Ax(t)+b(t) 满足初始条件 x ( 0 ) x(0) x(0) 的特解
e t A = [ e t t e t 0 e t 0 e 2 t ] e − τ A b ( τ ) = [ e − τ 0 1 ] , ∫ 0 t e − τ A b ( τ ) d τ = [ 1 − e − t 0 t ] x ( t ) = e t A ⋅ [ ( − 1 1 0 ) + [ 1 − e − t 0 t ] ] = [ t e t − 1 e t t e 2 t ] \begin{gathered} e^{t A}=\left[\begin{array}{ccc} e^{t} & t e^{t} & 0 \\ & e^{t} & 0 \\ & e^{2 t} \end{array}\right] \\ e^{-\tau A} b(\tau)=\left[\begin{array}{c} e^{-\tau} \\ 0 \\ 1 \end{array}\right], \quad \int_{0}^{t} e^{-\tau A} b(\tau) d \tau=\left[\begin{array}{c} 1-e^{-t} \\ 0 \\ t \end{array}\right] \\ x(t)=e^{t A} \cdot\left[\left(\begin{array}{c} -1 \\ 1 \\ 0 \end{array}\right)+\left[\begin{array}{c} 1-e^{-t} \\ 0 \\ t \end{array}\right]\right]=\left[\begin{array}{c} t e^{t}-1 \\ e^{t} \\ t e^{2 t} \end{array}\right] \end{gathered} etA=ettetete2t00eτAb(τ)=eτ01,0teτAb(τ)dτ=1et0tx(t)=etA110+1et0t=tet1ette2t

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值