C4 矩阵分解

0. 顺序主子式

在这里插入图片描述

1. 三角分解(为方便Guass消去法-化上阶梯矩阵的过程)

1.1 LU分解

  • 目的: 将 n \boldsymbol{n} n 阶矩阵 A A A分解为一个下三角矩阵L和一个上三角矩阵U的乘积
  • 形式: A = L U A = LU A=LU
  • 推论:设 A \boldsymbol{A} A n \boldsymbol{n} n 阶非奇异矩阵, A \boldsymbol{A} A 有三角分解 A = L U \boldsymbol{A}=\boldsymbol{L} \boldsymbol{U} A=LU,
    的充要条件是 A \mathrm{A} A 的顺序主子式 Δ k ≠ 0 k = 1 , 2 , ⋯   , n \Delta_{k} \neq 0 \quad k=1,2, \cdots, n Δk=0k=1,2,,n

1.2 LDU分解

  • 目的: 将 n \boldsymbol{n} n 阶矩阵 A A A分解为一个单位下三角矩阵L对角矩阵D和一个单位上三角矩阵U的乘积
  • 形式: A = L D U A=LDU A=LDU
  • 定理:
    p:矩阵 A = ( a i j ) n × n A=\left(a_{i j}\right)_{n \times n} A=(aij)n×n 的分解式唯一 ⇔ \Leftrightarrow q:A的顺序主子式 Δ k ≠ 0 \Delta_{k} \neq 0 Δk=0
    且这个唯一的分解式 A = L D U A=LDU A=LDU中, D = diag ⁡ ( d 1 , d 2 , ⋯   , d n ) , d k = Δ k Δ k − 1 , k = 1 , 2 , ⋯   , n ( Δ 0 = 1 ) D=\operatorname{diag}\left(d_{1}, d_{2}, \cdots, d_{n}\right), d_{k}=\frac{\Delta_{k}}{\Delta_{k-1}}, k=1,2, \cdots, n \quad\left(\Delta_{0}=1\right) D=diag(d1,d2,,dn),dk=Δk1Δk,k=1,2,,n(Δ0=1)

1.3 LDU分解步骤

  • 目的: A = L D U = L ~ U \boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{U}=\tilde{\boldsymbol{L}} \boldsymbol{U} A=LDU=L~U,求其中的L和U, L = L ~ = [ l 11 l 21 l 22 ⋮ ⋮ ⋱ l n 1 l n 2 ⋯ l n n ] , U = [ 1 u 12 ⋯ u 1 n 1 ⋯ u 2 n ⋱ ⋮ 1 ] \boldsymbol{L}=\tilde{\boldsymbol{L}}=\left[\begin{array}{cccc}l_{11} & & & \\ l_{21} & l_{22} & & \\ \vdots & \vdots & \ddots & \\ l_{n 1} & l_{n 2} & \cdots & l_{n n}\end{array}\right], \boldsymbol{U}=\left[\begin{array}{cccc}1 & u_{12} & \cdots & u_{1 n} \\ & 1 & \cdots & u_{2 n} \\ & & \ddots & \vdots \\ & & & 1\end{array}\right] L=L~=l11l21ln1l22ln2lnn,U=1u121u1nu2n1,使得 [ a 11 a 12 ⋯ a 1 n a 21 a 22 a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] = [ l 11 l 21 l 22 ⋮ ⋮ ⋱ l n 1 l n 2 ⋯ l n n ] [ 1 u 12 ⋯ u 1 n 1 ⋯ u 2 n ⋱ ⋮ 1 ] \left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right]=\left[\begin{array}{ccc}l_{11} & & \\ l_{21} & l_{22} & & \\ \vdots & \vdots & \ddots & \\ l_{n 1} & l_{n 2} & \cdots & l_{n n}\end{array}\right]\left[\begin{array}{ccc}1 & u_{12} & \cdots & u_{1 n} \\ & 1 & \cdots & u_{2 n} \\ & & \ddots & \vdots \\ & & & 1\end{array}\right] a11a21an1a12a22an2a1na2nann=l11l21ln1l22ln2lnn1u121u1nu2n1

  • 步骤:
    在这里插入图片描述

  • 例题:
    在这里插入图片描述

2. QR分解

  • 目的:将矩阵分解为正交矩阵与上三角矩阵之积
  • 定理: A n × n A_{n \times n} An×n 可逆 ⇒ ∃ \Rightarrow \exists 正交矩阵 Q \boldsymbol{Q} Q, 可逆上三角矩阵 R \boldsymbol{R} R, 使得 A = Q R \boldsymbol{A}=\boldsymbol{Q} \boldsymbol{R} A=QR

2.0 施密特正交化法进行QR分解

  • 方法:Schmidt正交化方法
    ( a 1 , a 2 , ⋯   , a n ) = ( b 1 , b 2 , ⋯   , b n ) K \left(a_{1}, a_{2}, \cdots, a_{n}\right)=\left(b_{1}, b_{2}, \cdots, b_{n}\right) K (a1,a2,,an)=(b1,b2,,bn)K
    其中, { b 1 = a 1 b 2 = a 2 − k 21 b 1 ⋯ ⋯ b n = a n − k n , n − 1 b n − 1 − ⋯ − k n 1 b 1 \left\{\begin{aligned} b_{1}=& a_{1} \\ b_{2}=& a_{2}-k_{21} b_{1} \\ & \cdots \cdots \\ b_{n}=& a_{n}-k_{n, n-1} b_{n-1}-\cdots-k_{n 1} b_{1} \end{aligned}\right. b1=b2=bn=a1a2k21b1ankn,n1bn1kn1b1 K = [ 1 k 21 ⋯ k n 1 1 ⋯ k n 2 ⋱ ⋮ 1 ] K=\left[\begin{array}{cccc} 1 & k_{21} & \cdots & k_{n 1} \\ & 1 & \cdots & k_{n 2} \\ & & \ddots & \vdots \\ & & & 1 \end{array}\right] K=1k211kn1kn21
    Q = ( q 1 , q 2 , ⋯   , q n ) , R = [ ∣ b 1 ∣ ∣ b 2 ∣ ⋱ ∣ b n ∣ ] [ 1 k 21 ⋯ k n 1 1 ⋯ k n 2 ⋱ ⋮ 1 ] Q=\left(q_{1}, q_{2}, \cdots, q_{n}\right), R=\left[\begin{array}{llll}\left|b_{1}\right| & & & \\ & \left|b_{2}\right| & & \\ & & \ddots & \\ & & & \left|b_{n}\right|\end{array}\right]\left[\begin{array}{cccc}1 & k_{21} & \cdots & k_{n 1} \\ & 1 & \cdots & k_{n 2} \\ & & \ddots & \vdots \\ & & & & 1\end{array}\right] Q=(q1,q2,,qn),R=b1b2bn1k211kn1kn21
  • 例题:
    在这里插入图片描述

2.1 Givens变换(由Givens矩阵确定的变换)

在这里插入图片描述
Givens矩阵性质:

  1. T i j T T i j = T i j ( c , − s ) = [ I c − s I s c I ] , ∣ T i j ∣ = 1 T_{i j}^{T} T_{i j}=T_{i j}(c,-s)=\left[\begin{array}{ccccc} I & & & & \\ & c & & -s & \\ & & I & & \\ & s & & c & \\ & & & & I \end{array}\right], \quad\left|T_{i j}\right|=1 TijTTij=Tij(c,s)=IcsIscI,Tij=1
  2. x = [ ξ 1 ⋮ ξ n ] , T i j x = [ η 1 ⋮ η n ] ⇒ { η i = c ξ i + s ξ j η j = − s ξ i + c ξ j η k = ξ k ( k ≠ i , j ) x=\left[\begin{array}{c}\xi_{1} \\ \vdots \\ \xi_{n}\end{array}\right], \quad T_{i j} x=\left[\begin{array}{c}\eta_{1} \\ \vdots \\ \eta_{n}\end{array}\right] \Rightarrow\left\{\begin{array}{l}\eta_{i}=c \xi_{i}+s \xi_{j} \\ \eta_{j}=-s \xi_{i}+c \xi_{j} \\ \eta_{k}=\xi_{k}(k \neq i, j)\end{array}\right. x=ξ1ξn,Tijx=η1ηnηi=cξi+sξjηj=sξi+cξjηk=ξk(k=i,j)
    ξ i 2 + ξ j 2 ≠ 0 \xi_{i}^{2}+\xi_{j}^{2} \neq 0 ξi2+ξj2=0, , 取 c = ξ i ξ i 2 + ξ j 2 , s = ξ j ξ i 2 + ξ j 2 c=\frac{\xi_{i}}{\sqrt{\xi_{i}^{2}+\xi_{j}^{2}}}, s=\frac{\xi_{j}}{\sqrt{\xi_{i}^{2}+\xi_{j}^{2}}} c=ξi2+ξj2 ξi,s=ξi2+ξj2 ξj
    η i = ξ i 2 + ξ j 2 > 0 , η j = 0 \eta_{i}=\sqrt{\xi_{i}^{2}+\xi_{j}^{2}}>0, \quad \eta_{j}=0 ηi=ξi2+ξj2 >0,ηj=0
  • 例题:
    在这里插入图片描述

2.2 HouseHolder变换

  • 定义:
      设单位列向量 u ∈ R n u \in R^{n} uRn, 称 H = I − 2 u u T H=I-2 u u^{T} H=I2uuT为Householder矩阵(初等反射矩阵), 由 H \mathbf{H} H 矩阵确定的线性变换称为Householder变换。

注意: e i e i T 即 在 第 i 行 i 列 为 1 , 其 余 都 为 0 的 矩 阵 e_{i} e_{i}^{T}即在第i行i列为1,其余都为0的矩阵 eieiTii10

  • 性质:
    H u = I n − 2 u u T ( u ∈ R n \boldsymbol{H}_{u}=\boldsymbol{I}_{n}-2 u u^{T} \quad\left(u \in R^{n}\right. Hu=In2uuT(uRn 是单位列向量 ) ) )
    (1) H = H T \boldsymbol{H}=\boldsymbol{H}^{T} H=HT    对称
    (2) H T H = I \boldsymbol{H}^{T} \boldsymbol{H}=\boldsymbol{I} HTH=I   正交
    (3) H 2 = I \boldsymbol{H}^{2}=\boldsymbol{I} H2=I    对合
    (4) H − 1 = H \boldsymbol{H}^{-1}=\boldsymbol{H} H1=H   自逆
    (5) det ⁡ H = − 1 \operatorname{det} \boldsymbol{H}=-\mathbf{1} detH=1  自逆

  • 例题:
    u = x − ∣ x ∣ z ∣ x − ∣ x ∣ z ∣ u=\frac{x-|x| z}{|x-| x|z|} u=xxzxxz
    在这里插入图片描述

2.3 G矩阵和H矩阵关系

  1. G矩阵 T i j ( c , s ) ⇒ ∃ H , T_{i j}(c, s) \Rightarrow \exists \mathrm{H}, Tij(c,s)H矩阵 H u H_{u} Hu H v H_{v} Hv, st T i j = H u H v T_{i j}=H_{u} H_{v} Tij=HuHv

T i j ( c , s ) = [ I cos ⁡ θ sin ⁡ θ I − sin ⁡ θ cos ⁡ θ I ] T_{i j}(c, s)=\left[\begin{array}{cccc}I & & & \\ & \cos \theta & & \sin \theta & \\ & & I & & \\ & -\sin \theta & & \cos \theta & \\ & & & &I\end{array}\right] Tij(c,s)=IcosθsinθIsinθcosθI
ν = [ 0 ⋯ 0 sin ⁡ θ 4 0 ⋯ 0 cos ⁡ θ 4 0 ⋯ 0 ] T \nu=\left[\begin{array}{lllllllll}0 & \cdots & 0 & \sin \frac{\theta}{4} & 0 & \cdots & 0 & \cos \frac{\theta}{4} & 0 & \cdots & 0\end{array}\right]^{T} ν=[00sin4θ00cos4θ00]T
u = [ 0 ⋯ 0 sin ⁡ 3 θ 4 0 ⋯ 0 cos ⁡ 3 θ 4 0 ⋯ 0 ] T u=\left[\begin{array}{lllllllll}0 & \cdots & 0 & \sin \frac{3 \theta}{4} & 0 & \cdots & 0 & \cos \frac{3 \theta}{4} & 0 & \cdots & 0\end{array}\right]^{T} u=[00sin43θ00cos43θ00]T

  1. H-矩阵不能由若干个 G矩阵的乘积来表示

det ⁡ H = − 1 \operatorname{det} H=-1 detH=1, 而 det ⁡ G = 1 \operatorname{det} G=1 detG=1

2.4 G变化法进行QR分解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.5 H变换法进行QR分解

在这里插入图片描述
在这里插入图片描述

3. 矩阵的满秩分解

  • 目的:对 A ∈ C r m × n ( n ≥ 1 ) A \in C_{r}^{m \times n}(n \geq 1) ACrm×n(n1), 求 F ∈ C r m × r F \in C_{r}^{m \times r} FCrm×r, 及 G ∈ C r r × n G \in C_{r}^{r \times n} GCrr×n 使 A m × n = F m × r G r × n A_{m×n}=F_{m×r} G_{r×n} Am×n=Fm×rGr×n
  • 例题:
    在这里插入图片描述
    A = P − 1 B = ( F m × r ∣ S m × ( m − r ) ) ( G O ) = F G A=P^{-1} B=\left(F_{m \times r} \mid S_{m \times(m-r)}\right)\left(\begin{array}{l}G \\ O\end{array}\right)=F G A=P1B=(Fm×rSm×(mr))(GO)=FG
    在这里插入图片描述

4. 奇异值分解SVD

4.0 Hermite(半)正定矩阵和酉矩阵

矩阵A是Hermite矩阵,则 A H = A A^{H}=A AH=A
A \mathrm{A} A n \mathrm{n} n 阶Hermite矩阵,如果对任意 n n n 维向量 X \mathrm{X} X 都有 x H A x ≥ 0 x^{H} A x \geq 0 xHAx0 ,则称 A \mathrm{A} A 为半正定(非 负定) 矩阵; 如果对任意 n n n 维向量X都有 x H A x > 0 x^{H} A x>0 xHAx>0 ,则称 A A A 为正定矩阵。

酉矩阵: Q H Q = I Q^{H} Q=I QHQ=I

4.1 奇异值分解

目的: A = U D V H A=U D V^{H} A=UDVH
定理 16: A m × n ∈ C r m × n ( r ≥ 1 ) , Σ r = [ σ 1 ⋱ σ r ] A_{m \times n} \in C_{r}^{m \times n}(r \geq 1), \Sigma_{r}=\left[\begin{array}{lll}\sigma_{1} & & \\ & \ddots & \\ & & \sigma_{r}\end{array}\right] Am×nCrm×n(r1),Σr=σ1σr为奇异值矩阵,
存在酉矩阵 U m × m U_{m \times m} Um×m V n × n V_{n \times n} Vn×n, 使得 U H A V = [ Σ r 0 0 0 ] m × n ≜ D U^{H} A V=\left[\begin{array}{cc}\Sigma_{r} & 0 \\ 0 & 0\end{array}\right]_{m \times n} \triangleq D UHAV=[Σr000]m×nD
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

定理17: A ∈ C r m × n ( r ≥ 0 ) A \in C_{r}^{m \times n}(r \geq 0) ACrm×n(r0) 的奇异值分解 A = U [ Σ 0 0 0 ] V H A=U\left[\begin{array}{ll}\Sigma & 0 \\ 0 & 0\end{array}\right] V^{H} A=U[Σ000]VH 中, 划分 U = ( u 1 , u 2 , ⋯   , u m ) , V = ( v 1 , v 2 , ⋯   , v n ) U=\left(u_{1}, u_{2}, \cdots, u_{m}\right), V=\left(v_{1}, v_{2}, \cdots, v_{n}\right) U=(u1,u2,,um),V=(v1,v2,,vn), 则有
(1) N ( A ) = span ⁡ { v r + 1 , v r + 2 , ⋯   , v n } N(A)=\operatorname{span}\left\{v_{r+1}, v_{r+2}, \cdots, v_{n}\right\} N(A)=span{vr+1,vr+2,,vn};
(2) R ( A ) = span ⁡ { u 1 , u 2 , ⋯   , u r } R(A)=\operatorname{span}\left\{u_{1}, u_{2}, \cdots, u_{r}\right\} R(A)=span{u1,u2,,ur};
(3) A = σ 1 u 1 v 1 H + σ 2 u 2 v 2 H + ⋯ + σ r u r v r H A=\sigma_{1} u_{1} v_{1}^{\mathrm{H}}+\sigma_{2} u_{2} v_{2}^{\mathrm{H}}+\cdots+\sigma_{r} u_{r} v_{r}^{\mathrm{H}} A=σ1u1v1H+σ2u2v2H++σrurvrH

A m × n , B m × n A_{m \times n}, B_{m \times n} Am×n,Bm×n, 若有酉矩阵 U m × m U_{m \times m} Um×m V n × n V_{n \times n} Vn×n, 使 U H A V = B U^{H} A V=B UHAV=B A \boldsymbol{A} A B \boldsymbol{B} B 正交相抵。
定理18: A  与  B  正交相抵  ⇒ σ A = σ B  证明:  B = U H A V ⇒ B H B = ⋯ = V − 1 ( A H A ) V ⇒ λ B H B = λ A H A ≥ 0 ⇒ σ A = σ B \begin{aligned} A \text { 与 } B \text { 正交相抵 } & \Rightarrow \sigma_{A}=\sigma_{B} \\ \text { 证明: } \quad B=U^{H} A V & \Rightarrow B^{H} B=\cdots=V^{-1}\left(A^{H} A\right) V \\ & \Rightarrow \lambda_{B^{H} B}=\lambda_{A^{H} A} \geq 0 \\ & \Rightarrow \sigma_{A}=\sigma_{B} \end{aligned} A  B 正交相抵  证明B=UHAVσA=σBBHB==V1(AHA)VλBHB=λAHA0σA=σB

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值