图形学中4x4矩阵的理解

计算机图形学中矩阵往往是4x4的:

A X = \begin{bmatrix} a_{x} & b_{x} & c_{x} & t1 \\ a_{y} & b_{y} & c_{y} & t2 \\ a_{z} & b_{z} & c_{z} & t3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}       

如何理解4x4矩阵呢,不妨拆开这个矩阵:

A X = \begin{bmatrix} a_{x}x + b_{x}y + c_{x}z + t1 \\ a_{y}x + b_{y}y + c_{y}z + t2 \\ a_{z}x + b_{z}y + c_{z}z + t3 \\ 0 + 0 + 0 + 1 \end{bmatrix} = \begin{bmatrix} a_{x}x + b_{x}y + c_{x}z \\ a_{y}x + b_{y}y + c_{y}z \\ a_{z}x + b_{z}y + c_{z}z\end{bmatrix} + \begin{bmatrix} t1 \\ t2 \\ t3 \end{bmatrix}

可以看见,只有左上角的3x3的矩阵参与了线性变换,如果,想要将平移放到这个矩阵当中,并且添加的一列不参与线性变换,则需要添加新的一列,也就是增加一个维度。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值