POJ Dropping tests 题解

题目传送门

题目大意: n n n 个物品,每个物品有 a i , b i a_i,b_i ai,bi 两个属性,去掉 k k k 个物品使得剩下的物品的 a i a_i ai 之和与 b i b_i bi 之和比值最大。

题解

典型的分数规划,设他们的比值为 r r r,则有
∑ a i ∑ b i = r ∑ a i − r × ∑ b i = 0 \begin{aligned} \frac {\sum a_i} {\sum b_i}&=r\\ \sum a_i-r\times \sum b_i&=0 \end{aligned} biaiair×bi=r=0

假如我们知道 r r r 的话,就能知道当前的最优方案,即求出每个物品的 a i − r × b i a_i-r\times b_i air×bi,然后取前 n − k n-k nk 大的加起来就好了。

如果加起来大于 0 0 0,也就是 ∑ a i − r × ∑ b i > 0 \sum a_i-r\times \sum b_i>0 air×bi>0,即 ∑ a i ∑ b i > r \frac {\sum a_i} {\sum b_i}>r biai>r,说明存在更好的方案,那么就可以将 r r r 增大,然后不断尝试找到最大的 r r r 即可。这样的 r r r 是一定存在的,因为通过观察可以发现,当 r r r 增大时 a i − r × b i a_i-r\times b_i air×bi 在减小。

要说怎么枚举 r r r 的话,很显然是用二分啦。

代码如下:

#include <cstdio>
#include <algorithm>
using namespace std;
#define maxn 10010

int n,k,a[maxn],b[maxn];
double l,r,mid,c[maxn];
bool check(double x)
{
	for(int i=1;i<=n;i++)
	c[i]=(double)a[i]-x*(double)b[i];
	sort(c+1,c+n+1);
	double tot=0.0;
	for(int i=n;i>k;i--)tot+=c[i];
	return tot>0;
}

int main()
{
	while(scanf("%d %d",&n,&k),n+k)
	{
		for(int i=1;i<=n;i++)scanf("%d",&a[i]);
		for(int i=1;i<=n;i++)scanf("%d",&b[i]);
		l=0;r=1;
		while(r-l>1e-6)
		{
			mid=(l+r)/2.0;
			if(check(mid))l=mid;
			else r=mid;
		}
		printf("%d\n",(int)(l*100+0.5));
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值