题目大意: 有 n n n 个物品,每个物品有 a i , b i a_i,b_i ai,bi 两个属性,去掉 k k k 个物品使得剩下的物品的 a i a_i ai 之和与 b i b_i bi 之和比值最大。
题解
典型的分数规划,设他们的比值为
r
r
r,则有
∑
a
i
∑
b
i
=
r
∑
a
i
−
r
×
∑
b
i
=
0
\begin{aligned} \frac {\sum a_i} {\sum b_i}&=r\\ \sum a_i-r\times \sum b_i&=0 \end{aligned}
∑bi∑ai∑ai−r×∑bi=r=0
假如我们知道 r r r 的话,就能知道当前的最优方案,即求出每个物品的 a i − r × b i a_i-r\times b_i ai−r×bi,然后取前 n − k n-k n−k 大的加起来就好了。
如果加起来大于 0 0 0,也就是 ∑ a i − r × ∑ b i > 0 \sum a_i-r\times \sum b_i>0 ∑ai−r×∑bi>0,即 ∑ a i ∑ b i > r \frac {\sum a_i} {\sum b_i}>r ∑bi∑ai>r,说明存在更好的方案,那么就可以将 r r r 增大,然后不断尝试找到最大的 r r r 即可。这样的 r r r 是一定存在的,因为通过观察可以发现,当 r r r 增大时 a i − r × b i a_i-r\times b_i ai−r×bi 在减小。
要说怎么枚举 r r r 的话,很显然是用二分啦。
代码如下:
#include <cstdio>
#include <algorithm>
using namespace std;
#define maxn 10010
int n,k,a[maxn],b[maxn];
double l,r,mid,c[maxn];
bool check(double x)
{
for(int i=1;i<=n;i++)
c[i]=(double)a[i]-x*(double)b[i];
sort(c+1,c+n+1);
double tot=0.0;
for(int i=n;i>k;i--)tot+=c[i];
return tot>0;
}
int main()
{
while(scanf("%d %d",&n,&k),n+k)
{
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=1;i<=n;i++)scanf("%d",&b[i]);
l=0;r=1;
while(r-l>1e-6)
{
mid=(l+r)/2.0;
if(check(mid))l=mid;
else r=mid;
}
printf("%d\n",(int)(l*100+0.5));
}
}