简单讲解 glm::mat4


前言

glm库是OpenGL的官方数学库,里面内置多种跟几何变换相关的函数,熟练掌握glm库可以省下很多麻烦。
因为最近在项目中主要使用了 glm::mat4 ,所以加上我自己的理解,想分享一下。


一、下载glm库

我下载的是:glm 0.9.9.8 版本。

二、基本数学知识

1. 三维中的 4 x 4 矩阵

在三维计算中,使用一个 4 x 4 的齐次矩阵可以表示旋转、位移和缩放。这个 4 x 4 的矩阵就是对应glm::mat4类型。注意:glm::mat4 是float类型
具体的分析过程可以看:LearnOpenGL CN - 入门-变换 这一节的内容。下面是一些结论。

2.旋转

在这里插入图片描述

3. 位移

在这里插入图片描述

4. 缩放

在这里插入图片描述

5. 组合

在这里插入图片描述


三、行向量或列向量

无论是上面的分析,还是现实生活中的数学计算,基本都是以行向量为主。但是,我们要知道,计算机本身的存储并没有方向之分,是我们自己的读取或者写入逻辑赋予了它顺序。
glm库在创建之时,为了兼容其他的东西(具体我忘了),导致它是以列向量的方向进行存储。这就与我们的常识相反。所以,就需要一些特殊的技巧,来避免转换错误。
具体看下面的代码:

#include <iostream>
#include <glm/glm.hpp>

int main()
{
#pragma region 1. 准备一个 4 * 4 的行向量矩阵
    /*
    *  1.0, 0.0, 0.0, 10.0
    *  0.0, 1.0, 0.0, 20.0
    *  0.0, 0.0, 1.0, 30.0
    *  0.0, 0.0, 0.0, 1.0
    */
    float mat0[4][4] = {
        {1.0f, 0.0f, 0.0f, 10.0f},
        {0.0f, 1.0f, 0.0f, 20.0f},
        {0.0f, 0.0f, 1.0f, 30.0f},
        {0.0f, 0.0f, 0.0f, 1.0f}
    };
#pragma endregion

#pragma region 2. 将 unit_mat 转换为 glm::mat4 类型
    glm::mat4 mat1{ 0.0f };
    for (int r = 0; r < 4; ++r)
    {
        for (int c = 0; c < 4; ++c)
        {
            mat1[r][c] = mat0[c][r];
        }
    }

    for (int r = 0; r < 4; ++r)
    {
        for (int c = 0; c < 4; ++c)
        {
            std::cout << mat1[c][r] << " ";      // 列向量,所以第一个[]代表的是列,第二个[]代表的是行
        }
        std::cout << std::endl;
    }
    /* 输出
    * 1 0 0 10
    * 0 1 0 20
    * 0 0 1 30
    * 0 0 0 1
    */
#pragma endregion

#pragma region 3. 将 glm::mat4 转回 列向量 的 float[4][4]
    float mat2[4][4]{ 0.0f };
    for (int r = 0; r < 4; ++r)
    {
        for (int c = 0; c < 4; ++c)
        {
            mat2[r][c] = mat1[r][c];
        }
    }

    for (int r = 0; r < 4; ++r)
    {
        for (int c = 0; c < 4; ++c)
        {
            std::cout << mat2[c][r] << " ";      
        }
        std::cout << std::endl;
    }
    /* 输出
    * 1 0 0 10
    * 0 1 0 20
    * 0 0 1 30
    * 0 0 0 1
    */
#pragma endregion
}


四、总结

总而言之,无论是使用 glm::mat4,还是float[4][4],还是float[16],你都要先想用行向量表示出来你的矩阵,然后再去转换,这样就一定没错!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值