这段代码定义了一个函数fill_ndarry
,该函数的目的是填充二维NumPy数组t1
中的NaN值。NaN值是浮点数的特殊值,表示不是一个数字(Not a Number)。函数的工作流程如下:
-
遍历数组的每一列。
-
对于每一列,检查是否有NaN值。
-
如果有NaN值,计算该列中非NaN值的平均值。
-
将NaN值替换为计算出的平均值。
# coding=utf-8
import numpy as np
# 定义函数fill_ndarry,用于填充二维NumPy数组中的NaN值
def fill_ndarry(t1):
# 遍历数组的每一列
for i in range(t1.shape[1]):
# 获取当前列
temp_col = t1[:, i]
# 计算当前列中NaN值的数量
nan_num = np.count_nonzero(temp_col != temp_col)
# 如果当前列中有NaN值
if nan_num != 0:
# 创建一个新的列,只包含非NaN的元素
temp_not_nan_col = temp_col[temp_col == temp_col]
# 计算非NaN元素的平均值
temp_col_mean = temp_not_nan_col.mean()
# 将当前列中的NaN值替换为计算出的平均值
temp_col[np.isnan(temp_col)] = temp_col_mean