在前面的章节中,我们已经了解到分词包括以下几个步骤:
- 规范化(对文本进行必要的清理,如移除空格或重音,进行 Unicode 规范化等)
- 预分词(将输入分割成单词)
- 使用模型处理输入(使用预分词后的单词生成一序列令牌)
- 后处理(添加分词器的特殊令牌,生成注意力掩码和类型 ID)
为了回顾,这是整个过程的概述:
🤗 Tokenizers 库提供了这些步骤的多种选项,您可以根据需要组合使用。在本节中,我们将学习如何从头开始构建分词器,而不是像 第2章 中那样从旧分词器中训练新的分词器。这样,您就可以构建任何您能想到的分词器了!
具体来说,库的架构围绕着一个核心 Tokenizer
类,其构建块被组织在子模块中:
normalizers
包含所有可用的Normalizer
类型(完整列表 在这里)。pre_tokenizers
包含所有可用的PreTokenizer
类型(完整列表 在这里)。models
包含可用的各种Model
类型,如BPE
、WordPiece
和Unigram
(完整列表 在这里)。trainers
包含用于在语料库上训练模型的不同类型的Trainer
(每种模型类型一个;完整列表 在这里)。post_processors
包含可用的各种PostProcessor
类型(完整列表 在这里)。decoders
包含可用的各种Decoder
类型,用于解码分词的输出(完整列表 在这里)。
您可以在这里找到所有构建块的完整列表:这里。
获取语料库
为了训练我们的新分词器,我们将使用一小部分文本(以便示例运行速度快)。获取语料库的步骤类似于本章开头的步骤,但这次我们将使用 WikiText-2 数据集:
from datasets import load_dataset
dataset = load_dataset("wikitext", name="wikitext-2-raw-v1", split="train")
def get_training_corpus():
for i in range(0, len(dataset), 1000):
yield dataset[i : i + 1000]["text"]
get_training_corpus()
函数是一个生成器,它将按批次(每次1000个)生成文本,用于训练分词器。
🤗 Tokenizers 也可以直接在文本文件上进行训练。以下是生成包含 WikiText-2 中所有文本/输入的本地文本文件的方法:
with open("wikitext-2.txt", "w", encoding="utf-8") as f:
for i in range(len(dataset)):
f.write(dataset[i]["text"] + "\n")
接下来,我们将逐块构建 BERT、GPT-2 和 XLNet 分词器的示例,这将展示三种主要分词算法(WordPiece、BPE 和 Unigram)的每个例子。让我们从 BERT 开始!
从头开始构建 WordPiece 分词器
要使用 🤗 Tokenizers 库构建分词器,我们首先创建一个 Tokenizer
对象,指定一个 model
,然后设置其 normalizer
、pre_tokenizer
、post_processor
和 decoder
属性为我们想要的值。
在这个示例中,我们将创建一个使用 WordPiece 模型的 Tokenizer
:
from tokenizers import (
decoders,
models,
normalizers,
pre_tokenizers,
processors,
trainers,
Tokenizer,
)
tokenizer = Tokenizer(models.WordPiece(unk_token="[UNK]"))
我们必须指定unk_token
,以便模型在遇到之前未见过的字符时知道返回什么。其他可设置的参数包括我们的模型的vocab
(我们将训练模型,所以不需要设置这个)以及max_input_chars_per_word
,它指定了每个单词的最大长度(超过传递值的单词将被分割)。
分词的第一步是规范化,让我们从这里开始。由于BERT被广泛使用,我们有一个BertNormalizer
,它提供了经典的BERT选项:lowercase
和strip_accents
,它们的含义显而易见;clean_text
用于移除所有控制字符并用单个空格替换重复的空格;以及handle_chinese_chars
,它在中文字符周围放置空格。要复制bert-base-uncased
分词器,我们可以设置如下:
tokenizer.normalizer = normalizers.BertNormalizer(lowercase=True)
然而,一般来说,当你构建一个新的分词器时,你可能没有在🤗 Tokenizers库中预先实现的这种方便的正常izer。让我们看看如何手动创建BERT正常器。库提供了Lowercase
和StripAccents
正常器,你可以使用Sequence
来组合多个正常器:
tokenizer.normalizer = normalizers.Sequence(
[normalizers.NFD(), normalizers.Lowercase(), normalizers.StripAccents()]
)
我们还使用了NFD
Unicode正常化器,否则StripAccents
正常器可能无法正确识别带音符的字符,从而无法移除它们。
如前所见,我们可以使用normalizer
的normalize_str()
方法来检查它对给定文本的影响:
print(tokenizer.normalizer.normalize_str("Héllò hôw are ü?"))
hello how are u?
深入学习 如果你在一个包含Unicode字符u"\u0085"
的字符串上测试这两个版本的正常器,你肯定会注意到这两个正常器并不完全等价。为了不使使用normalizers.Sequence
的版本过于复杂,我们没有包含clean_text
设置为True
(默认行为)时BertNormalizer
所需的正则替换。但别担心,完全可以通过在正常器序列中添加两个normalizers.Replace
来获得完全相同的规范化,而无需使用方便的BertNormalizer
。
接下来是预分词步骤。同样,我们也可以使用预构建的BertPreTokenizer
:
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
或者从头开始构建:
tokenizer.pre_tokenizer = pre_tokenizers.Whitespace()
请注意,Whitespace
预分词器在空格和所有非字母、数字或下划线字符上进行分割,因此它实际上在空格和标点符号上进行分割:
tokenizer.pre_tokenizer.pre_tokenize_str("Let's test my pre-tokenizer.")
[('Let', (0, 3)), ("'", (3, 4)), ('s', (4, 5)), ('test', (6, 10)), ('my', (11, 13)), ('pre', (14, 17)),
('-', (17, 18)), ('tokenizer', (18, 27)), ('.', (27, 28))]
如果你只想在空格上分割,你应该使用WhitespaceSplit
预分词器:
pre_tokenizer = pre_tokenizers.WhitespaceSplit()
pre_tokenizer.pre_tokenize_str("Let's test my pre-tokenizer.")
[("Let's", (0, 5)), ('test', (6, 10)), ('my', (11, 13)), ('pre-tokenizer.', (14, 28))]
就像规范化器一样,你可以使用Sequence
来组合多个预分词器:
pre_tokenizer = pre_tokenizers.Sequence(
[pre_tokenizers.WhitespaceSplit(), pre_tokenizers.Punctuation()]
)
pre_tokenizer.pre_tokenize_str("Let's test my pre-tokenizer.")
[('Let', (0, 3)), ("'", (3, 4)), ('s', (4, 5)), ('test', (6, 10)), ('my', (11, 13)), ('pre', (14, 17)),
('-', (17, 18)), ('tokenizer', (18, 27)), ('.', (27, 28))]
接下来的分词流程是将输入通过模型。我们在初始化时已经指定了模型,但还需要对其进行训练,这就需要一个WordPieceTrainer
。在🤗 Tokenizers中实例化训练器时,需要记住传递所有打算使用的特殊令牌——否则,它们不会被添加到词汇表中,因为它们不在训练语料库中:
special_tokens = ["[UNK]", "[PAD]", "[CLS]", "[SEP]", "[MASK]"]
trainer = trainers.WordPieceTrainer(vocab_size=25000, special_tokens=special_tokens)
除了指定vocab_size
和special_tokens
,我们还可以设置min_frequency
(一个令牌必须出现的次数,以被包含在词汇表中),或者更改continuing_subword_prefix
(如果我们想使用不同的前缀)。
要使用我们之前定义的迭代器训练模型,只需执行以下命令:
tokenizer.train_from_iterator(get_training_corpus(), trainer=trainer)
我们也可以使用文本文件来训练分词器,如下所示(我们先用一个空的WordPiece
模型初始化):
tokenizer.model = models.WordPiece(unk_token="[UNK]")
tokenizer.train(["wikitext-2.txt"], trainer=trainer)
在两种情况下,我们可以通过调用encode()
方法对文本进行测试:
encoding = tokenizer.encode("Let's test this tokenizer.")
print(encoding.tokens)
['let', "'", 's', 'test', 'this', 'tok', '##eni', '##zer', '.']
encoding
是一个Encoding
对象,它在其各种属性中包含了分词器的所有必要输出:ids
、type_ids
、tokens
、offsets
、attention_mask
、special_tokens_mask
和overflowing
。
分词流程的最后一步是后处理。我们需要在开头添加[CLS]
令牌,在末尾添加[SEP]
令牌(如果是一对句子,就在每个句子后添加)。我们将使用TemplateProcessor
来完成这个任务,但首先我们需要知道[CLS]
和[SEP]
令牌在词汇表中的ID:
cls_token_id = tokenizer.token_to_id("[CLS]")
sep_token_id = tokenizer.token_to_id("[SEP]")
print(cls_token_id, sep_token_id)
(2, 3)
为了编写TemplateProcessor
的模板,我们需要指定如何处理单个句子和一对句子。对于两者,我们都写入想要使用的特殊令牌;单个句子用$A
表示,而一对句子中的第二个句子用$B
表示。对于每个(特殊令牌和句子),我们还指定其对应的类型ID,后面跟着冒号。
经典的BERT模板如下所示:
tokenizer.post_processor = processors.TemplateProcessing(
single=f"[CLS]:0 $A:0 [SEP]:0",
pair=f"[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
special_tokens=[("[CLS]", cls_token_id), ("[SEP]", sep_token_id)],
)
需要注意的是,我们需要传递特殊令牌的ID,以便分词器能正确将其转换为ID。
添加这个后,回到我们之前的例子,我们得到:
encoding = tokenizer.encode("Let's test this tokenizer.")
print(encoding.tokens)
['[CLS]', 'let', "'", 's', 'test', 'this', 'tok', '##eni', '##zer', '.', '[SEP]']
对于一对句子,我们得到正确的结果:
encoding = tokenizer.encode("Let's test this tokenizer...", "on a pair of sentences.")
print(encoding.tokens)
print(encoding.type_ids)
['[CLS]', 'let', "'", 's', 'test', 'this', 'tok', '##eni', '##zer', '...', '[SEP]', 'on', 'a', 'pair', 'of', 'sentences', '.', '[SEP]']
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
我们已经从头开始构建了这个分词器——最后一步是添加解码器:
tokenizer.decoder = decoders.WordPiece(prefix="##")
让我们用之前的encoding
测试一下:
tokenizer.decode(encoding.ids)
"let's test this tokenizer... on a pair of sentences."
太好了!我们可以将分词器保存到一个JSON文件中,如下所示:
tokenizer.save("tokenizer.json")
然后,我们可以使用from_file()
方法重新加载这个文件到Tokenizer
对象中:
new_tokenizer = Tokenizer.from_file("tokenizer.json")
要将这个分词器用于🤗 Transformers,我们需要将其包装在PreTrainedTokenizerFast
中。我们可以使用通用类,或者如果我们的分词器对应于现有的模型,可以使用那个类(在这里,BertTokenizerFast
)。如果你用这个教程创建一个全新的分词器,你将需要使用第一个选项。
将分词器包装在PreTrainedTokenizerFast
中的方式是,要么传递我们构建的分词器对象,要么传递我们保存的分词器文件。关键是要记住,我们必须手动设置所有特殊令牌,因为这个类无法从tokenizer
对象中推断出哪个令牌是掩码令牌、[CLS]
令牌等:
from transformers import PreTrainedTokenizerFast
wrapped_tokenizer = PreTrainedTokenizerFast(
tokenizer_object=tokenizer,
# tokenizer_file="tokenizer.json", # 你可以从分词器文件加载,或者
unk_token="[UNK]",
pad_token="[PAD]",
cls_token="[CLS]",
sep_token="[SEP]",
mask_token="[MASK]",
)
如果你使用特定的分词器类(如BertTokenizerFast
),你只需要指定与默认不同的特殊令牌(在这里,没有特殊令牌):
from transformers import BertTokenizerFast
wrapped_tokenizer = BertTokenizerFast(tokenizer_object=tokenizer)
然后,你可以像使用任何其他🤗 Transformers分词器一样使用这个分词器。你可以使用save_pretrained()
方法保存它,或者使用push_to_hub()
方法将其上传到Hub。
现在我们已经了解了如何构建WordPiece分词器,接下来让我们做同样的事情,构建一个BPE分词器。由于你已经知道了所有步骤,我们会快速进行,并突出显示差异。
从头开始构建BPE分词器
现在,让我们构建一个GPT-2分词器。与BERT分词器类似,我们首先初始化一个Tokenizer
,使用BPE模型:
tokenizer = Tokenizer(models.BPE())
同样地,如果我们有一个词汇表,我们可以使用它初始化这个模型(在这种情况下,我们需要传递vocab
和merges
),但因为我们将从头开始训练,所以我们不需要这样做。我们也不需要指定unk_token
,因为GPT-2使用字节级BPE,它不需要。
GPT-2不使用常规化,所以我们跳过这一步,直接进行预分词:
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False)
我们为ByteLevel
添加的选项是不添加句子开头的空格(这是默认的)。我们可以像之前一样查看一个示例文本的预分词:
tokenizer.pre_tokenizer.pre_tokenize_str("Let's test pre-tokenization!")
[('Let', (0, 3)), ("'s", (3, 5)), ('Ġtest', (5, 10)), ('Ġpre', (10, 14)), ('-', (14, 15)),
('tokenization', (15, 27)), ('!', (27, 28))]
接下来是模型,它需要训练。对于GPT-2,唯一的特殊令牌是结束文本的令牌:
trainer = trainers.BpeTrainer(vocab_size=25000, special_tokens=[""])
tokenizer.train_from_iterator(get_training_corpus(), trainer=trainer)
与WordPieceTrainer
一样,我们也可以指定min_frequency
,或者如果我们有词尾后缀(如</w>
),我们可以使用end_of_word_suffix
设置它。
这个分词器也可以在文本文件上进行训练:
tokenizer.model = models.BPE()
tokenizer.train(["wikitext-2.txt"], trainer=trainer)
让我们看看一个示例文本的分词:
这是Markdown文件的中文翻译,保持Markdown语法不变:
encoding = tokenizer.encode("让我们测试这个分词器。")
print(encoding.tokens)
['L', 'et', "'", 's', 'Ġtest', 'Ġthis', 'Ġto', 'ken', 'izer', '.']
我们为GPT-2分词器应用字节级后处理如下:
tokenizer.post_processor = processors.ByteLevel(trim_offsets=False)
trim_offsets=False
选项告诉后处理器,我们应该保留以’Ġ’开头的令牌的偏移量不变:这样,偏移量的开始将指向单词前的空格,而不是单词的第一个字符(因为空格实际上是令牌的一部分)。让我们用刚刚编码的文本来看结果,其中’Ġtest’是第4个令牌:
sentence = "Let's test this tokenizer."
encoding = tokenizer.encode(sentence)
start, end = encoding.offsets[4]
sentence[start:end]
' test'
最后,我们添加一个字节级解码器:
tokenizer.decoder = decoders.ByteLevel()
我们可以检查它是否工作正常:
tokenizer.decode(encoding.ids)
"Let's test this tokenizer."
太好了!现在我们完成了,可以像以前一样保存分词器,如果想在🤗 Transformers中使用,可以将其包装在PreTrainedTokenizerFast
或GPT2TokenizerFast
中:
from transformers import PreTrainedTokenizerFast
wrapped_tokenizer = PreTrainedTokenizerFast(
tokenizer_object=tokenizer,
bos_token="",
eos_token="",
)
或:
from transformers import GPT2TokenizerFast
wrapped_tokenizer = GPT2TokenizerFast(tokenizer_object=tokenizer)
最后一个示例,我们将展示如何从头开始构建一个Unigram分词器。
从头开始构建Unigram分词器
现在,让我们构建一个XLNet分词器。像之前的分词器一样,我们首先初始化一个Tokenizer
,使用Unigram模型:
tokenizer = Tokenizer(models.Unigram())
同样,如果我们有一个词汇表,也可以用它初始化这个模型。
对于规范化,XLNet使用了一些替换(来自SentencePiece):
from tokenizers import Regex
tokenizer.normalizer = normalizers.Sequence(
[
normalizers.Replace("``", '"'),
normalizers.Replace("''", '"'),
normalizers.NFKD(),
normalizers.StripAccents(),
normalizers.Replace(Regex(" {2,}"), " "),
]
)
这将“
和”
替换为”
,将任何两个或多个空格替换为一个空格,并移除要分词文本中的重音。
对于任何SentencePiece分词器,预处理器应使用Metaspace
:
tokenizer.pre_tokenizer = pre_tokenizers.Metaspace()
我们可以像以前一样查看一个示例文本的预处理:
tokenizer.pre_tokenizer.pre_tokenize_str("Let's test the pre-tokenizer!")
[("▁Let's", (0, 5)), ('▁test', (5, 10)), ('▁the', (10, 14)), ('▁pre-tokenizer!', (14, 29))]
接下来是模型,需要训练。XLNet有许多特殊令牌:
special_tokens = ["<cls>", "<sep>", "<unk>", "<pad>", "<mask>", "<s>", "</s>"]
trainer = trainers.UnigramTrainer(
vocab_size=25000, special_tokens=special_tokens, unk_token="<unk>"
)
tokenizer.train_from_iterator(get_training_corpus(), trainer=trainer)
UnigramTrainer
中的一个非常重要的参数是unk_token
。我们还可以传递Unigram算法特定的其他参数,如每次步骤中移除令牌的shrinking_factor
(默认为0.75),或指定每个令牌的最大长度的max_piece_length
(默认为16)。
这个分词器也可以在文本文件上进行训练:
tokenizer.model = models.Unigram()
tokenizer.train(["wikitext-2.txt"], trainer=trainer)
让我们看看一个样本文本的分词:
encoding = tokenizer.encode("让我们测试这个分词器。")
print(encoding.tokens)
['Let', "'", 's', 'test', 'this', 'to', 'ken', 'izer', '.']
XLNet的一个特性是它将<cls>
token放在句子的末尾,类型ID为2(以区分其他token)。结果是左边填充。我们可以像处理BERT一样处理所有特殊token和token类型ID,但首先我们需要获取<cls>
和<sep>
token的ID:
cls_token_id = tokenizer.token_to_id("<cls>")
sep_token_id = tokenizer.token_to_id("<sep>")
print(cls_token_id, sep_token_id)
0 1
模板如下:
tokenizer.post_processor = processors.TemplateProcessing(
single="$A:0 <sep>:0 <cls>:2",
pair="$A:0 <sep>:0 $B:1 <sep>:1 <cls>:2",
special_tokens=[("<sep>", sep_token_id), ("<cls>", cls_token_id)],
)
我们可以用它来编码一对句子来测试:
encoding = tokenizer.encode("Let's test this tokenizer...", "on a pair of sentences!")
print(encoding.tokens)
print(encoding.type_ids)
['▁Let', "'", 's', '▁test', '▁this', '▁to', 'ken', 'izer', '.', '.', '.', '<sep>', '▁', 'on', '▁', 'a', '▁pair',
'▁of', '▁sentence', 's', '!', '<sep>', '<cls>']
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2]
最后,我们添加一个Metaspace
解码器:
tokenizer.decoder = decoders.Metaspace()
这样,这个分词器就完成了!我们可以像之前一样保存分词器,如果要在🤗 Transformers中使用,可以将其包装成PreTrainedTokenizerFast
或XLNetTokenizerFast
:
from transformers import PreTrainedTokenizerFast
wrapped_tokenizer = PreTrainedTokenizerFast(
tokenizer_object=tokenizer,
bos_token="<s>",
eos_token="</s>",
unk_token="<unk>",
pad_token="<pad>",
cls_token="<cls>",
sep_token="<sep>",
mask_token="<mask>",
padding_side="left",
)
或者:
from transformers import XLNetTokenizerFast
wrapped_tokenizer = XLNetTokenizerFast(tokenizer_object=tokenizer)
现在你已经了解了如何使用各种构建块来构建现有的分词器,你应该能够使用🤗 Tokenizers库编写任何你想要的分词器,并在🤗 Transformers中使用它。在使用PreTrainedTokenizerFast
时,请注意,除了特殊token,还需要告诉🤗 Transformers库在左边进行填充。