2022考研笔记-数学(python实现-极坐标系下的各种图形)

这篇博客展示了如何使用Python的NumPy和Matplotlib库在极坐标系下绘制笛卡尔心形线、玫瑰线、阿基米德螺线和伯努利双纽线。通过调用numpy的linspace函数生成角度,然后计算对应的半径,最后利用matplotlib的plot函数绘制图形。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.极坐标系下的各种图形

笛卡尔心形线为极坐标系下的数学常见图形
本案例用numpy和matplotlib库实现

  • NumPy(Numerical Python) 是 Python
    语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
  • Matplotlib 是 Python 编程语言及其数值数学扩展包 NumPy 的可视化操作界面。它为利用通用的图形用户界面工具包,如
    Tkinter, wxPython, Qt 或 GTK+ 向应用程序嵌入式绘图提供了应用程序接口(API)。
import numpy as np 
import matplotlib.pyplot as plt

# 心形线
a = 1
theta = np.linspace(0, 2*np.pi, 1000)
r = a*(1 - np.cos(theta))
plt.axes(polar = True)
plt.plot(theta, r)
plt.show()

# 玫瑰线
a = 1
theta = np.linspace(0, 2*np.pi, 1000)
r = a* np.sin(3*theta)
plt.axes(polar = True)
plt.plot(theta, r)
plt.show()

# 阿基米德螺线
a = 1
theta = np.linspace(0, 10*np.pi, 1000)
r = a * theta
plt.axes(polar = True)
plt.plot(theta, r)
plt.show()

# 伯努利双纽线
a = 1
theta = np.linspace(0, 2*np.pi, 1000)
r = np.sqrt(2*(a**2)*np.cos(2*theta))
plt.axes(polar = True)
plt.plot(theta, r)
plt.show()

画出四个图形如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

np.linspace来选取0到2π的1000个点,计算r,polar=True 为极坐标图

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愚公搬代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值