Logarithmic-Trigonometric积分系列(一)

\[\Large\displaystyle \int_{0}^{\frac{\pi }{2}}x^{2}\ln\left ( \sin x \right )\ln\left ( \cos x \right )\mathrm{d}x\]


\(\Large\mathbf{Solution:}\)
Tools Needed
\[\frac{1}{k\left ( j- k \right )^{2}}=\frac{1}{j^{2}k}-\frac{1}{j^{2}\left ( k- j \right )}+\frac{1}{j\left ( k- j \right )^{2}}\]
\[\frac{1}{k\left ( j+ k \right )^{2}}=\frac{1}{j^{2}k}-\frac{1}{j^{2}\left ( k+ j \right )}-\frac{1}{j\left ( k+j \right )^{2}}\]
\[\ln\left ( \sin x \right )=-\ln 2-\sum_{k=1}^{\infty }\frac{\cos\left ( 2kx \right )}{k}\]
\[\ln\left ( \cos x \right )=-\ln 2-\sum_{k=1}^{\infty }\left ( -1 \right )^{k}\frac{\cos\left ( 2kx \right )}{k}\]
\[\cos\left ( 2jx \right )\cos\left ( 2kx \right )=\frac{1}{2}\left [ \cos\left ( 2\left ( j-k \right )x \right )+\cos\left ( 2\left ( j+k \right )x \right ) \right ]\]
\[\int_{0}^{\frac{\pi }{2}}x^{2}\cos\left ( 2kx \right )\mathrm{d}x=\begin{cases} \left ( -1 \right )^{k}\displaystyle \frac{\pi }{4k^{2}}& \text{ if } k\neq 0 \\ \displaystyle \frac{\pi ^{3}}{24}& \text{ if } k=0 \end{cases}\]
Tool Use
\[\begin{align*} &\int_{0}^{\frac{\pi }{2}}x^{2}\ln\left ( \sin x \right )\ln\left ( \cos x \right )\mathrm{d}x \\ &=\int_{0}^{\frac{\pi }{2}}x^{2}\left ( \ln 2+\sum_{k=1}^{\infty }\frac{\cos\left ( 2kx \right )}{k} \right )\left ( \ln 2+\sum_{k=1}^{\infty }\left ( -1 \right )^{k}\frac{\cos\left ( 2kx \right )}{k} \right )\mathrm{d}x \\ &=\ln^{2}2 \int_{0}^{\frac{\pi }{2}}x^{2}\mathrm{d}x+\ln 2\sum_{k=1}^{\infty }\frac{1}{k}\int_{0}^{\frac{\pi }{2}}x^{2}\cos\left ( 4kx \right )\mathrm{d}x\\ &~~~+\sum_{j=1}^{\infty }\sum_{k=1}^{\infty }\frac{\left ( -1 \right )^{k}}{2jk}\int_{0}^{\frac{\pi }{2}}x^{2}\left [ \cos\left ( 2\left ( j-k \right )x \right )+\cos\left ( 2\left ( j+k \right )x \right ) \right ]\mathrm{d}x \\ &=\frac{\pi ^{3}}{24}\ln^{2}2+\ln 2\frac{\pi }{16}\zeta \left ( 3 \right ) \\ &~~~+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\sum_{k=1}^{j-1}\frac{1}{k\left ( j-k \right )^{2}}+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j^{2}}\frac{\pi ^{2}}{6}+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\sum_{k=j+1}^{\infty }\frac{1}{k\left ( j-k \right )^{2}} \\ &~~~+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\sum_{k=1}^{\infty }\frac{1}{k\left ( j+k \right )^{2}} \\ &=\frac{\pi ^{3}}{24}\ln^{2}2+\ln 2\frac{\pi }{16}\zeta \left ( 3 \right ) \\ &~~~+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\left ( \frac{2}{j^{2}}H_{j-1}+\frac{1}{j}H_{j-1}^{\left ( 2 \right )} \right )-\frac{\pi ^{5}}{576}+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\left ( -\frac{1}{j^{2}}H_{j}+\frac{1}{j}\frac{\pi ^{2}}{6} \right )\\ &~~~+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\left ( \frac{1}{j^{2}}H_{j}-\frac{1}{j}\frac{\pi ^{2}}{6}+\frac{1}{j}H_{j}^{\left ( 2 \right )} \right ) \\ &=\frac{\pi ^{3}}{24}\ln^{2}2+\ln 2\frac{\pi }{16}\zeta \left ( 3 \right ) \\ &~~~+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\left ( \frac{2}{j^{2}}H_{j}+\frac{2}{j}H_{j}^{\left ( 2 \right )}-\frac{3}{j^{3}} \right )-\frac{\pi ^{5}}{576} \\ &=\frac{\pi ^{3}}{24}\ln^{2}2+\ln 2\frac{\pi }{16}\zeta \left ( 3 \right )+\frac{11\pi ^{5}}{5760}+\frac{\pi }{4}\sum \left ( -1 \right )^{j}\left ( \frac{1}{j^{3}}H_{j}+\frac{1}{j^{2}}H_{j}^{\left ( 2 \right )} \right ) \\ &=\frac{\pi ^{3}}{24}\ln^{2}2+\ln 2\frac{\pi }{16}\zeta \left ( 3 \right )-\frac{\pi ^{5}}{960}-\frac{\pi }{16}\sum_{j=1}^{\infty }\frac{H_{2j}}{j^{3}} \end{align*}\]
Using the known result
\[\sum_{n=1}^{\infty }\frac{H_{2n}}{n^{3}}=-\frac{\pi ^{4}}{15}-\frac{1}{3}\pi ^{2}\ln^{2}2+\frac{\ln^{4}2}{3}+8\mathrm{Li}_{4}\left ( \frac{1}{2} \right )+7\ln 2\zeta \left ( 3 \right )\]
So here is the final result:
\[\Large\boxed{\displaystyle \begin{align*} \int_{0}^{\frac{\pi }{2}}x^{2}\ln\left ( \sin x \right )\ln\left ( \cos x \right )\mathrm{d}x&=\color{blue}{\frac{\pi ^{3}}{16}\ln^{2}2+\frac{\pi ^{5}}{320}-\frac{3}{8}\ln 2\zeta \left ( 3 \right )}\\ &~~~\color{blue}{-\frac{\pi }{48}\ln^{4}2-\frac{1}{2}\mathrm{Li}_{4}\left ( \frac{1}{2} \right )} \end{align*}}\]

转载于:https://www.cnblogs.com/Renascence-5/p/5488576.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值