常见的双曲函数为:
cosh
t
=
1
2
(
e
t
+
e
−
t
)
,
sinh
t
=
1
2
(
e
t
−
e
−
t
)
\cosh t=\frac{1}{2}\left(e^{t}+e^{-t}\right), \quad \sinh t=\frac{1}{2}\left(e^{t}-e^{-t}\right)
cosht=21(et+e−t),sinht=21(et−e−t)
他们的性质如下:
(1)
(
cosh
t
)
′
=
sinh
t
,
(
sinh
t
)
′
=
cosh
t
(\cosh t)^{\prime}=\sinh t,(\sinh t)^{\prime}=\cosh t
(cosht)′=sinht,(sinht)′=cosht
(2)
cosh
2
t
−
sinh
2
t
=
1
,
cosh
2
t
=
cosh
2
t
+
sinh
2
t
,
sinh
2
t
=
2
sinh
t
cosh
t
\cosh ^{2} t-\sinh ^{2} t=1, \cosh 2 t=\cosh ^{2} t+\sinh ^{2} t, \sinh 2 t=2 \sinh t \cosh t
cosh2t−sinh2t=1,cosh2t=cosh2t+sinh2t,sinh2t=2sinhtcosht
(3)
x
=
sinh
t
x=\sinh t
x=sinht 的反函数为
t
=
ln
(
x
+
1
+
x
2
)
t=\ln (x+\sqrt{1+x^{2}})
t=ln(x+1+x2),
x
=
cosh
t
x=\cosh t
x=cosht 的反函数为
t
=
ln
(
x
+
x
2
−
1
)
t=\ln (x+\sqrt{x^{2}-1})
t=ln(x+x2−1)
对于
a
2
+
x
2
\sqrt{a^2+x^2}
a2+x2类型,我们可以令
x
=
a
sinh
t
x=a\sinh t
x=asinht(其实也可以进行
x
=
tan
x
x=\tan x
x=tanx或者
x
=
cot
x
x=\cot x
x=cotx的替换,只不过上述方法更简单)。
双曲函数在积分换元中的应用
最新推荐文章于 2024-08-18 01:28:56 发布