前言
前阵子使用RNN写了个古体诗生成器(有趣的深度学习——使用TensorFlow 2.0 + RNN 实现一个古体诗生成器)的NLP小Demo玩玩。而现在说到NLP,就很难绕开Transformers系列模型,譬如BERT、GPT-2、RoBERTa、ALBERT、XLNet等等。Transformers系列模型不断刷新着NLP任务得分记录,在绝大多数任务下都远胜于传统的、基于RNN的NLP任务。
那么,既然之前用RNN写了个古体诗生成器,我们不妨也用BERT写一个吧,正好对比一下效果。
转载请注明来源:https://blog.csdn.net/aaronjny/article/details/104802847
解读
代码结构和功能与有趣的深度学习——使用TensorFlow 2.0 + RNN 实现一个古体诗生成器(https://blog.csdn.net/aaronjny/article/details/103806954)基本上相同,只是将模型从RNN换成了BERT,注释也很详细,感觉没有解读的必要了。
对照着这两份文档就能搞清楚:
基于RNN的模型的详细文档:使用TensorFlow 2.0 + RN