毕业设计——基于 Pytorch的垃圾识别与分类系统的设计与实现

本文详细描述了一种基于PyTorch的垃圾识别与分类系统,利用卷积神经网络进行图像特征提取,介绍了关键技术和应用前景,包括数据预处理、模型构建、训练与优化以及其在环保和垃圾分类中的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

完整源码获取可私信博主

毕业设计——基于 Pytorch的垃圾识别与分类系统的设计与实现

随着全球范围内垃圾处理问题的日益严重,垃圾识别与分类技术成为了解决这一问题的关键手段。基于深度学习的垃圾识别与分类系统,尤其是利用PyTorch这样的强大框架,已经展现出了显著的成效。本文将对该系统的设计与实现进行综述,介绍其基本原理、关键技术、以及应用前景。

一、基本原理

基于PyTorch的垃圾识别与分类系统主要利用卷积神经网络(CNN)进行图像特征的提取和分类。CNN通过多层卷积、池化和全连接操作,能够从输入的垃圾图像中自动学习并提取出有用的特征信息。这些特征信息随后被用于训练分类器,以实现对垃圾图像的准确分类。

二、关键技术

数据预处理:由于垃圾图像数据通常具有多样性、复杂性和噪声等特点,因此需要对数据进行预处理以提高模型的性能。这包括图像缩放、归一化、增强等操作,以及标签的编码和转换。
模型构建:选择合适的CNN结构是系统设计的关键。常用的CNN结构包括AlexNet、VGGNet、ResNet等。这些结构具有不同的深度和复杂度,可以根据具体任务的需求进行选择和调整。
训练与优化:使用PyTorch框架进行模型的训练和优化。这包括选择合适的损失函数、优化器、学习率等超参数,以及进行模型的迭代训练和调整。同时,还需要利用验证集进行模型性能的评估,以防止过拟合现象的发生。
部署与测试:将训练好的模型部署到实际应用中,并对新的垃圾图像进行分类测试。这需要对模型进行前向传播计算,并输出相应的分类结果。

三、应用前景

基于PyTorch的垃圾识别与分类系统具有广泛的应用前景。首先,它可以应用于城市垃圾分类处理领域,帮助提高垃圾处理的效率和准确性。其次,它还可以应用于环保教育和宣传领域,通过展示不同垃圾的分类结果,提高公众对垃圾分类的认识和重视程度。此外,随着技术的不断发展,该系统还可以进一步拓展到智能家居、智能垃圾桶等领域,实现更加智能化和自动化的垃圾处理。

四、总结与展望

基于PyTorch的垃圾识别与分类系统是一种高效、准确的垃圾处理方法。通过利用深度学习和计算机视觉技术,该系统能够自动学习和提取垃圾图像的特征信息,并实现对垃圾的快速分类。然而,目前该系统仍面临一些挑战,如数据集的局限性、模型的泛化能力等问题。未来研究可以进一步探索如何优化模型结构、提高分类性能,并拓展其在更多领域的应用。

综上所述,基于PyTorch的垃圾识别与分类系统是一个具有重要意义的研究方向。随着技术的不断进步和应用场景的拓展,相信该系统将在未来发挥更大的作用,为解决全球垃圾处理问题提供有力支持。

源程序结构
在这里插入图片描述main.py: 模型训练代码
inference.py:前向传播
config.py: 程序运行时的相关参数
data/TrashSet.py:垃圾数据集类
images/文件夹:提供一些测试图片
models/mbv3_small.pth.tar:mobilenet v3 在 imagenet 预训练权重
models/mobilenetv3.py: 模型文件
utils/文件夹:提供一些关于 imagenet 的可用函数
模型训练结果
数据集
自己采集的垃圾分类数据集 TrashBig, 其中有 12 个小类别:
[‘bananapeel’, ‘battery’, ‘cardboard’, ‘clothes’, ‘drugs’, ‘glass’, ‘lightbulb’, ‘metal’, ‘paper’, ‘papercup’, ‘plastic’, ‘vegetable’]

这12个小类别分别属于四个大类别:
{‘Recyclables’: 2624, ‘Kitchen waste’: 939, ‘Hazardous waste’: 1581, ‘Other’: 963}

训练集图片共计 6000 张左右。验证数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毕业小助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值