『概率知识』伯努利试验及n重伯努利试验+方差协方差理解!

伯努利试验及n重伯努利试验+方差协方差理解!

一、伯努利试验

  • 设试验只有2个可能结果: A A A A ‾ \overline{A} A,则称实验为 E E E 伯努利实验;设 P ( A ) = p ( 0 < p < 1 ) P(A)=p(0 < p < 1) P(A)=p(0<p<1),此时 P ( A ‾ ) = 1 − p P(\overline{A})=1-p P(A)=1p

二、n重伯努利试验

  • E E E 为伯努利实验,将 E E E 重复的进行 n n n 次,则称这一串重复的 独立 试验为 n n n 重伯努利试验。

三、方差和协方差

  • 方差variance:
  • 理解如下:
  • 协方差covariance:
  • c o co co 就是合作的意思, 2 2 2 个变量;协方差表示:想知道 2 2 2 个变量之间的协方差,首先知道一个变量的方差 v a r ( x ) var(x) var(x),代表任意一个 X X X 到它的期望的差,再乘 y y y 到它的期望的差,两个差相乘,最后求一个均值(概率分布)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI大模型前沿研究

感谢您的打赏,我会继续努力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值