伯努利试验及n重伯努利试验+方差协方差理解! |
一、伯努利试验
- 设试验只有2个可能结果: A A A 与 A ‾ \overline{A} A,则称实验为 E E E 伯努利实验;设 P ( A ) = p ( 0 < p < 1 ) P(A)=p(0 < p < 1) P(A)=p(0<p<1),此时 P ( A ‾ ) = 1 − p P(\overline{A})=1-p P(A)=1−p。
二、n重伯努利试验
- 设 E E E 为伯努利实验,将 E E E 重复的进行 n n n 次,则称这一串重复的 独立 试验为 n n n 重伯努利试验。
三、方差和协方差
- 方差variance:

- 理解如下:

- 协方差covariance:

- c o co co 就是合作的意思, 2 2 2 个变量;协方差表示:想知道 2 2 2 个变量之间的协方差,首先知道一个变量的方差 v a r ( x ) var(x) var(x),代表任意一个 X X X 到它的期望的差,再乘 y y y 到它的期望的差,两个差相乘,最后求一个均值(概率分布)。
