建模实战|第五期:ortools求解CVRP问题(有容量约束的车辆路径问题)-附python代码

1.CVPR问题描述

车辆路径问题(VRP)有非常多的变形,这里介绍VRP研究最多的基本问题——有容量约束的车辆路径问题(Capacitated Vehicle Routing Problem,CVRP)。在CVRP问题中,要求由一个车队承担将货物从一个仓库运输到其他预先指定的客户点上的任务。其中,车队的车辆都是同质的,且都只能从仓库出发,服务完客户点后,返回仓库。每个客户点也只能被一辆车访问一次。决策对象是车辆的行驶路线,每辆车在不同的路线上的行驶成本不同,最终的目标是要使得完成这个任务的车队的总成本最小。

最简单的CVRP问题具有下面特征

单向:纯取货/纯送货(我们考虑送货的场景);
单配送中心:只有一个配送中心/车场;
单车型:只考虑一种车型;
需求不可拆分:客户需求只能由一辆车满足;
车辆封闭:完成配送任务的车辆需回到配送中心;
车辆充足:不限制车辆数量,即配送车辆需求均能满足;
非满载:任意客户点的需求量小于车辆最大载重。

2.CVPR问题建模

参考资源链接:[Python实现解决车辆路径问题的神经网络与强化学习算法](https://wenku.csdn.net/doc/1ciy4483ts?utm_source=wenku_answer2doc_content) 为了深入探索图神经网络(GNNs)和强化学习(RL)在解决车辆路径问题(VRP)中的应用,你可以参考《Python实现解决车辆路径问题的神经网络与强化学习算法》这一资源。首先,该资源将引导你理解GNNs在处理图结构数据时的优势,以及RL在路径优化中的策略学习过程。 通过资源提供的完整源码,你可以亲自复现论文《Efficiently solving the practical vehicle routing problem: A novel joint learning approach》中的方法和结果。源码中的`ortools_cvrp.py`文件将帮助你对比自定义算法与OR-Tools这一行业标准工具在求解VRP时的性能差异。 具体来说,你可以利用图神经网络对城市间交通网络进行建模和学习,然后通过强化学习来迭代地优化配送车辆路径选择。例如,你可以实现一个策略梯度算法,让模型在模拟的城市配送场景中不断尝试并基于奖励信号改进其策略。在训练过程中,你会观察到模型性能的提升,这可以通过可视化分析工具来帮助理解。 在对比分析方面,你可以使用OR-Tools来求解相同规模的VRP实例,然后将你的算法得到的路径长度、计算时间等关键指标与OR-Tools的结果进行比较。通过这种对比,你可以评估自定义算法在实际应用中的有效性,并根据需要对算法进行调整优化。 总之,这份资源不仅提供了理论知识的学习,还提供了从实现到应用的完整过程,适合对图神经网络、强化学习以及车辆路径问题感兴趣的Python开发者和数据科学家深入研究。 参考资源链接:[Python实现解决车辆路径问题的神经网络与强化学习算法](https://wenku.csdn.net/doc/1ciy4483ts?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值