目录
支持向量机SVM的详细原理
SVM的定义
SVM理论
Libsvm工具箱详解
简介
参数说明
易错及常见问题
完整代码和数据下载链接:基于SVM的功率识别,基于支持向量机的功率识别资源-CSDN文库 https://download.csdn.net/download/abc991835105/88862793
SVM应用实例, 基于SVM的功率识别,基于支持向量机的功率识别
代码
结果分析
展望
摘要
基于SVM的功率识别,基于支持向量机的功率识别,基于SVM的工况识别,SVM原理,SVM工具箱详解,SVM常见改进方法
支持向量机SVM的详细原理
SVM的定义
支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM的的学习算法就是求解凸二次规划的最优化算法。
(1)支持向量机(Support Vector Machine, SVM)是一种对数据进行二分类的广义线性分类器,其分类边界是对学习样本求解的最大间隔超平面。
(2)SVM使用铰链损失函数计算经验风险并在求解系统中加入了正则化项以优化结构风险,是一个具有稀疏性和稳健性的分
本文深入探讨了支持向量机(SVM)的原理,特别是其在功率识别中的应用。介绍了SVM的定义、理论,并详细讲解了Libsvm工具箱,包括参数设置和常见问题。通过实例展示了SVM在功率识别中的代码实现和效果,证明了SVM在小样本数据上的优秀表现和实用性。
订阅专栏 解锁全文
28

被折叠的 条评论
为什么被折叠?



