框架|pytorch网络的输入相关

一. 数据输入的类型

pytorch的基本数据结构是张量Tensor

1.张量的数据类型

张量的数据类型和numpy.array基本一一对应,但是不支持str类型。
包括:
torch.float16
torch.float32(torch.float)
torch.float64(torch.double)
torch.int8
torch.uint8
torch.int16
torch.int32(torch.int)
torch.int64(torch.long)
torch.bool

一般的神经网络建模使用的都是torch.float32类型
在这里插入图片描述

2. 张量的维度和尺寸

常用的方法

#查看维度
dim()  
#查看形状尺寸
size()
shape
#改变尺寸
reshape()
view()

3.张量、numpy数组、list的相互转化

张量转化为numpy数组, 借助numpy()方法

numpy数组转化为张量,借助torch.from_numpy()

注意上面两种方法是共享内存的,一个改变另一个也会改变。

可以用张量的clone()方法来中断这种联系,tensor.data.numpy()也可以
在这里插入图片描述

二. 数据输入的批次控制

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值