《征服数据结构》差分数组

摘要:

1,差分数组的介绍

2,二维差分数组的介绍

1,差分数组的介绍

差分数组主要是操作区间的,关于区间操作的数据结构比较多,除了前面讲的《稀疏表》,还有树状数组,线段树,伸展树Splay等。尤其是后面两个在信奥赛和蓝桥杯的比赛中用到的还是比较多的 ,之后我们也都会一一介绍、这里先看一下差分数组。

假设有这样一个问题,给你一个数组nums,先对区间[a,b]中每个元素加 3 ,在对区间[c,d]每个元素减 5  ……  ,这样非常频繁的区间修改,常规的做法可以一个个计算。

Java 代码:

// 给闭区间[a,b]中的每个元素都增加 k 。
public void increment(int[] nums, int a, int b, int k) {
    for (int i = a; i <= b; i++) {
        nums[i] += k;
    }
}

C++ 代码:

// 给闭区间[a,b]中的每个元素都增加 k 。
void increment(vector<int> &nums, int a, int b, int k) {
    for (int i = a; i <= b; i++) {
        nums[i] += k;
    }
}

频繁对数组的一段区间进行加减,如果一个个去操作,很明显效率很差,这个时候我们可以使用差分数组,差分数组就是原始数组相邻元素之间的差所构成的数组。定义差分数组d[n],则 d[i] = nums[i] − nums[i−1] ,其中 d[0] = nums[0] 。

4825ded9f5e7719183d37064c20e56ba.png

可以看到原数组的元素就是差分数组的前缀和,如果要计算nums[i],只需要把差分数组 d 的前 i 个元素相加即可。

nums[0] = d[0]
num[3] = d[0] + d[1] + d[2] + d[3]

有了差分数组,如果对区间 [a,b] 中的每个元素加 3 ,不需要在一个个操作,只需要在两端修改。如下图所示,可以看到原数组需要修改区间内的所有值,而差分数组只需要修改两个值即可,一个是给d[a]加上 3 ,一个是给d[b+1]减去 3 。

d[a] += 3;
d[b+1] -= 3;// 注意不能越界

fda564a77c7b67dd7b09439417852fbe.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据结构和算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值