推荐系统遇上深度学习(八十六)-[腾讯&微博]GateNet:使用门机制提升点击率预估效果...

本文探讨了GateNet模型如何利用门机制增强深度学习在点击率预估中的性能。GateNet结合了Feature Embedding Gate和Hidden Gate,前者在embedding层选择重要特征,后者在MLP层选择特征交互。实验结果显示,Field private门机制通常优于field sharing,而不同数据集对bit-wise和vector-wise门的效果有不同的反应。
摘要由CSDN通过智能技术生成

本文介绍的论文是《GateNet:Gating-Enhanced Deep Network for Click-Through Rate Prediction》
下载地址为:https://arxiv.org/pdf/2007.03519.pdf

1、背景

深度学习在CTR预估中已经有了广泛的应用。在深度学习模型中,大都包括embedding layer和MLP hidden layers。同时,门机制(gating mechanism)在CV和NLP领域也有广泛的应用,最为大家熟知的就是在LSTM和GRU中的应用。

关于门机制的介绍,大家可以参考张俊林老师(同时也是本文介绍的论文的作者之一)下面的博文:https://blog.csdn.net/malefactor/article/details/51183989#0-tsina-1-86888-397232819ff9a47a7b7e80a40613cfe1

一些实验证明门机制可以提升非凸深神经网络的可训练性,那么将门机制应用在深度学习CTR预估模型中,会碰出怎样的火花呢?本文介绍的便是二者的结合:GateNet。

2、GateNet介绍

推荐系统中常用的深度学习模型入Wide & Deep,YoutubeNet,DeepFM等,可以看到这些模型都包括embedding layer和MLP hidden layers,那么将门机制和这两种layer相结合,便产生了Feature Embedding Gate和Hidden Gate,接下来对二者分别介绍。

2.1 Feature Embedding Gate

Feature Embedding Gate主要是在embedding layer增加门机制,用于从特征中选择更为重要的特征。如果模型中带有Feature Embedding Gate,其网络结构如下图所示:

假设输入的离散特征,经过Embedding layer得到E=[e1,e2,e3,...,ei,...ef],其中f代表特征域的个数,ei代表第i个域的embedding向量,长度为K。

接下来,embedding向量会通过Feature Embedding Gate进行转换。首先,对每一个embedding向量,通过下面的公式来计算门值gi&#

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值