推荐算法最前沿|KDD2020推荐系统论文一览

作者:学派

链接:https://zhuanlan.zhihu.com/p/161705748

KDD(https://www.kdd.org/kdd2020/)是推荐领域一个顶级的国际会议。本次接收的论文按照推荐系统应用场景可以大致划分为:CTR预估、TopN推荐、对话式推荐、序列推荐等。同时,GNN、强化学习、多任务学习、迁移学习、AutoML、元学习在推荐系统的落地应用也成为当下的主要研究点。此届会议有很大一部分来自工业界的论文,包括Google、Microsoft、Criteo、Spotify以及国内大厂阿里、百度、字节、华为、滴滴等。

CTR Prediction

1. AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction 【华为诺亚】

简介:本文采用AutoML的搜索方法选择重要性高的二次特征交互项、去除干扰项,提升FM、DeepFM这类模型的准确率。
论文:arxiv.org/abs/2003.1123

2. Category-Specific CNN for Visual-aware CTR Prediction at JD.com 【京东】

论文:arxiv.org/abs/2006.1033

3. Towards Automated Neural Interaction Discovering for Click-Through Rate Prediction 【Facebook】

论文:arxiv.org/abs/2007.0643

Graph-based Recommendation

1. A Framework for Recommending Accurate and Diverse Items Using Bayesian Graph Convolutional Neural Networks 【华为诺亚】

2. An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph 【Amazon】

论文:arxiv.org/abs/2007.0021

3. M2GRL: A Multi-task Multi-view Graph Representation Learning Framework for Web-scale Recommender Systems 【阿里】

简介:本文通过关联多个视角的图(item-item图、item-shop图、shop-shop图等)增强item表征,用于item召回。
论文:arxiv.org/abs/2005.1011

4. Handling Information Loss of Graph Neural Networks for Session-based Recommendation

5. Interactive Path Reasoning on Graph for Conversational Recommendation

论文:arxiv.org/abs/2007.0019

6. A Dual Heterogeneous Graph Attention Network to Improve Long-Tail Performance for Shop Search in E-Commerce 【阿里】

7. Gemini: A Novel and Universal Heterogeneous Graph Information Fusing Framework for Online Recommendations 【滴滴】

Conversational Recommendation

1. Evaluating Conversational Recommender Systems via User Simulation

论文:arxiv.org/abs/2006.0873

2. Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion

论文:arxiv.org/abs/2007.0403

3. Interactive Path Reasoning on Graph for Conversational Recommendation

论文:arxiv.org/abs/2007.0019

CF and Top-N Recommendation

1. Dual Channel Hypergraph Collaborative Filtering 【百度】

笔记:blog.csdn.net/weixin_42

2. Probabilistic Metric Learning with Adaptive Margin for Top-K Recommendation 【华为诺亚】

3. Controllable Multi-Interest Framework for Recommendation 【阿里】

论文:arxiv.org/abs/2005.0934

4. Embedding-based Retrieval in Facebook Search 【Facebook】

论文:arxiv.org/abs/2006.1163

5. On Sampling Top-K Recommendation Evaluation

Embedding and Representation

1. Compositional Embeddings Using Complementary Partitions for Memory-Efficient Recommendation Systems 【Facebook】

论文:arxiv.org/abs/1909.0210

2. PinnerSage: Multi-Modal User Embedding Framework for Recommendations at Pinterest 【Pinterest】

论文:arxiv.org/abs/2007.0363

3. SimClusters: Community-Based Representations for Heterogeneous Recommendations at Twitter 【Twitter】

4. Time-Aware User Embeddings as a Service 【Yahoo】

论文:astro.temple.edu/~tuf28

Sequential Recommendation

1. Disentangled Self-Supervision in Sequential Recommenders 【阿里】

论文:http://pengcui.thumedialab.com/papers/Disen...

2. Handling Information Loss of Graph Neural Networks for Session-based Recommendation

3. Maximizing Cumulative User Engagement in Sequential Recommendation: An Online Optimization Perspective 【阿里】

论文:arxiv.org/pdf/2006.0452

RL for Recommendation

1. Jointly Learning to Recommend and Advertise 【字节跳动】

论文:arxiv.org/abs/2003.0009

2. BLOB: A Probabilistic Model for Recommendation that Combines Organic and Bandit Signals 【Criteo】

3. Joint Policy-Value Learning for Recommendation 【Criteo】

论文:researchgate.net/public

Multi-Task Learning

1. Privileged Features Distillation at Taobao Recommendations 【阿里】

论文:arxiv.org/abs/1907.0517

Transfer Learning

1. Learning Transferrable Parameters for Long-tailed Sequential User Behavior Modeling 【Salesforce】

2. Semi-supervised Collaborative Filtering by Text-enhanced Domain Adaptation 【阿里】

论文:arxiv.org/abs/2007.0708

AutoML for Recommendation

1. Neural Input Search for Large Scale Recommendation Models 【Google】

论文:arxiv.org/abs/1907.0447

2. Towards Automated Neural Interaction Discovering for Click-Through Rate Prediction 【Facebook】

论文:arxiv.org/abs/2007.0643

Federated Learning

1. FedFast: Going Beyond Average for Faster Training of Federated Recommender Systems

Evaluation

1. Counterfactual Evaluation of Slate Recommendations with Sequential Reward Interactions 【Netflix, Spotify】

论文:arxiv.org/abs/2007.1298

2. Evaluating Conversational Recommender Systems via User Simulation

论文:arxiv.org/abs/2006.0873

3. 【Best Paper Award】On Sampled Metrics for Item Recommendation 【Google】

4. On Sampling Top-K Recommendation Evaluation

Debiasing

1. Debiasing Grid-based Product Search in E-commerce 【Etsy】

论文:public.asu.edu/~rguo12/

2. Counterfactual Evaluation of Slate Recommendations with Sequential Reward Interactions 【Netflix, Spotify】

论文:arxiv.org/abs/2007.1298

3. Attribute-based Propensity for Unbiased Learning in Recommender Systems: Algorithm and Case Studies 【Google】

论文:research.google/pubs/pu

POI Recommendation

1. Geography-Aware Sequential Location Recommendation 【Microsoft】

论文:staff.ustc.edu.cn/~lian

Cold-Start Recommendation

1. MAMO: Memory-Augmented Meta-Optimization for Cold-start Recommendation

论文:arxiv.org/abs/2007.0318

2. Meta-learning on Heterogeneous Information Networks for Cold-start Recommendation

论文:https://ink.library.smu.edu.sg/cgi/...

Others

1. Improving Recommendation Quality in Google Drive 【Google】

论文:research.google/pubs/pu

2. Temporal-Contextual Recommendation in Real-Time 【Amazon】

论文:https://assets.amazon.science/96/71/...
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页