数学竞赛好题几例
雨中漫步
(1) ∫ − ∞ + ∞ d x ( x 2 + 2 x + 2 ) n \displaystyle{\int_{-\infty}^{+\infty} \frac{d x}{\left(x^{2}+2 x+2\right)^{n}}} ∫−∞+∞(x2+2x+2)ndx
解:
x
+
1
=
tan
t
进行换元
:
x+1=\tan t\text{进行换元}:
x+1=tant进行换元:
∫
−
∞
+
∞
d
x
(
x
2
+
2
x
+
2
)
n
=
∫
−
∞
+
∞
cos
2
n
−
2
t
d
t
\int_{-\infty}^{+\infty}{\frac{dx}{\left( x^2+2x+2 \right) ^n}}=\int_{-\infty}^{+\infty}{\cos ^{2n-2}t}dt
∫−∞+∞(x2+2x+2)ndx=∫−∞+∞cos2n−2tdt
根据
w
a
l
l
i
s
公式
:
\text{根据}wallis\text{公式}:
根据wallis公式:
∫
−
∞
+
∞
cos
n
−
2
t
d
t
=
2
⋅
(
2
n
−
3
)
!
!
(
2
n
−
2
)
!
!
⋅
π
2
\int_{-\infty}^{+\infty}{\cos ^{n-2}t}dt=2\cdot \frac{\left( 2n-3 \right) !!}{\left( 2n-2 \right) !!}\cdot \frac{\pi}{2}
∫−∞+∞cosn−2tdt=2⋅(2n−2)!!(2n−3)!!⋅2π
=
(
2
n
−
3
)
!
!
(
2
n
−
2
)
!
!
π
\qquad \qquad =\frac{\left( 2n-3 \right) !!}{\left( 2n-2 \right) !!}\pi
=(2n−2)!!(2n−3)!!π
(2)求极限: lim n → ∞ ( b 1 n − 1 ) ∑ i = 0 n − 1 b i n sin b 2 i + 1 2 n ( b > 1 ) \lim\limits_{n\rightarrow \infty} \left( b^{\frac{1}{n}}-1 \right) \sum\limits_{i=0}^{n-1}{b^{\frac{i}{n}}\sin b^{\frac{2i+1}{2n}}}\ \ \left( b>1 \right) n→∞lim(bn1−1)i=0∑n−1bnisinb2n2i+1 (b>1)
解:
lim
n
→
∞
(
b
1
n
−
1
)
∑
i
=
0
n
−
1
b
i
n
sin
b
2
i
+
1
2
n
\lim_{n\rightarrow \infty} \left( b^{\frac{1}{n}}-1 \right) \sum_{i=0}^{n-1}{b^{\frac{i}{n}}\sin b^{\frac{2i+1}{2n}}}
n→∞lim(bn1−1)i=0∑n−1bnisinb2n2i+1
=
lim
n
→
∞
(
b
i
+
1
n
−
b
i
n
)
∑
i
=
0
n
−
1
sin
b
2
i
+
1
2
n
=\lim_{n\rightarrow \infty} \left( b^{\frac{i+1}{n}}-b^{\frac{i}{n}} \right) \sum_{i=0}^{n-1}{\sin b^{\frac{2i+1}{2n}}}
=n→∞lim(bni+1−bni)i=0∑n−1sinb2n2i+1
考虑
区
间划分
:
\text{考虑}区\text{间划分}:
考虑区间划分:
Δ
i
=
b
i
+
1
n
−
b
i
n
\Delta _i=b^{\frac{i+1}{n}}-b^{\frac{i}{n}}
Δi=bni+1−bni
由定积分定义
\text{由定积分定义}
由定积分定义
lim
n
→
∞
(
b
1
n
−
1
)
∑
i
=
0
n
−
1
b
i
n
sin
b
2
i
+
1
2
n
=
∫
1
b
sin
x
d
x
=
cos
1
−
cos
b
\lim_{n\rightarrow \infty} \left( b^{\frac{1}{n}}-1 \right) \sum_{i=0}^{n-1}{b^{\frac{i}{n}}\sin b^{\frac{2i+1}{2n}}}=\int_1^b{\sin x}dx=\cos 1-\cos b
n→∞lim(bn1−1)i=0∑n−1bnisinb2n2i+1=∫1bsinxdx=cos1−cosb
我们经常见到的黎曼积分定义求极限是
\text{我们经常见到的黎曼积分定义求极限是}
我们经常见到的黎曼积分定义求极限是
Δ
i
=
k
+
1
n
−
k
n
=
1
n
\Delta _i=\frac{k+1}{n}-\frac{k}{n}=\frac{1}{n}
Δi=nk+1−nk=n1
等间距划分,很少遇到这种
\text{等间距划分,很少遇到这种}
等间距划分,很少遇到这种
Δ
i
=
b
i
+
1
n
−
b
i
n
\Delta _i=b^{\frac{i+1}{n}}-b^{\frac{i}{n}}
Δi=bni+1−bni
非线性划分,望大家在学习过程中多些思考理解,少些方法套路
(3)将5个A和5个a有序排列,其中有种序列任意前k个数k=1,2…10,A的个数多于a的个数,例如:(A,a,A,a,A,a,A,A,a,a)满足条件,而(A,a,A,a,A,a,a,A,A,a)不满足,因为当k=7时,有4个a,3个A,试问这种序列有 42 ‾ \underline{\ \ \ 42\ \ \ \ } 42 种
解:我们将A视为进栈,a视为出栈,则这种序列对应着一种5个数据元素进出栈的方式,栈的特点是先进后出,不可能空栈出,也不可能满栈进,我们先不考虑无效进出栈的方式,那么10个A或a有五个A总共有 C 10 5 C_{10}^{5} C105种方式,而对于每种错误排序方式如下图:
A |
---|
a |
A |
a |
A |
a |
A |
a |
a |
A |
从第九个数据开始出现问题,前八个元素操作导致栈为空,不能再执行第九个元素对应的出栈操作,此时假设我们将之前的九个元素取反(A变为a,a变为A)
则变为:
a |
---|
A |
a |
A |
a |
A |
a |
A |
A |
A |
显然这两种序列是一一对应的(把第二种从前往后累加到1时,前面取反就回到第一个序列),而第二种序列的有6个A和4个a,排列方式为 C 10 4 C_{10}^{4} C104种,因此成功有效进出栈的次数只有 C 10 5 − C 10 4 = 42 种 C_{10}^{5}-C_{10}^{4}=42\text{种} C105−C104=42种
(4)已知:方程 x 2 ln a = x 2 ln x + a ln x x^2\ln a=x^2\ln x+a\ln x x2lna=x2lnx+alnx有三个实根,求 a a a的取值范围
解:先将问题转化为 x 2 ln a x 2 + a − ln x = 0 \frac{x^2\ln a}{x^2+a}-\ln x=0 x2+ax2lna−lnx=0有三个根
又
x
>
0
x>0
x>0,因此问题可以转化为
x
ln
a
x
+
a
−
ln
x
2
=
0
\frac{x\ln a}{x+a}-\frac{\ln x}{2}=0
x+axlna−2lnx=0有三个根,令
f
(
x
)
=
x
ln
a
x
+
a
−
ln
x
2
f\left( x \right) =\frac{x\ln a}{x+a}-\frac{\ln x}{2}
f(x)=x+axlna−2lnx则
f
′
(
x
)
=
a
ln
a
(
x
+
a
)
2
−
1
2
x
f'\left( x \right) =\frac{a\ln a}{\left( x+a \right) ^2}-\frac{1}{2x}
f′(x)=(x+a)2alna−2x1
=
−
x
2
+
(
2
a
ln
a
−
2
a
)
x
−
a
2
2
x
(
x
+
a
)
2
=\frac{-x^2+\left( 2a\ln a-2a \right) x-a^2}{2x\left( x+a \right) ^2}
=2x(x+a)2−x2+(2alna−2a)x−a2
f
′
(
x
)
f'(x)
f′(x)必须有两个正根,这样
f
(
x
)
f\left( x \right)
f(x)才能有两个极值点,从而才有可能有三个根
∴
Δ
=
4
a
2
(
ln
2
a
−
2
ln
a
)
>
0
\therefore \Delta =4a^2\left( \ln ^2a-2\ln a \right) >0
∴Δ=4a2(ln2a−2lna)>0
$\text{且}2a\ln a-2a>0\left( \text{保证}为\text{正根} \right) $
我们从而可以得出这个必要条件:
a
>
e
2
a>e^2
a>e2
此时:
x
1
=
a
ln
a
−
a
−
a
ln
2
a
−
2
ln
a
,
x_1=a\ln a-a-a\sqrt{\ln ^2a-2\ln a},
x1=alna−a−aln2a−2lna,
x
2
=
a
ln
a
−
a
+
a
ln
2
a
−
2
ln
a
x_2=a\ln a-a+a\sqrt{\ln ^2a-2\ln a}
x2=alna−a+aln2a−2lna代入
f
(
x
)
f(x)
f(x)可得:
f
(
x
1
)
<
0
,
f
(
x
2
)
>
0
f\left( x_1 \right) <0\text{,}f\left( x_2 \right) >0
f(x1)<0,f(x2)>0
∴
当
a
>
e
2
时,一定有三个解
\therefore \text{当} a>e^2\text{时,一定有三个}\text{解}
∴当a>e2时,一定有三个解