WHUT杯数学竞赛好题若干

数学竞赛好题几例

雨中漫步

(1) ∫ − ∞ + ∞ d x ( x 2 + 2 x + 2 ) n \displaystyle{\int_{-\infty}^{+\infty} \frac{d x}{\left(x^{2}+2 x+2\right)^{n}}} +(x2+2x+2)ndx

解:
x + 1 = tan ⁡ t 进行换元 : x+1=\tan t\text{进行换元}: x+1=tant进行换元:
∫ − ∞ + ∞ d x ( x 2 + 2 x + 2 ) n = ∫ − ∞ + ∞ cos ⁡ 2 n − 2 t d t \int_{-\infty}^{+\infty}{\frac{dx}{\left( x^2+2x+2 \right) ^n}}=\int_{-\infty}^{+\infty}{\cos ^{2n-2}t}dt +(x2+2x+2)ndx=+cos2n2tdt
根据 w a l l i s 公式 : \text{根据}wallis\text{公式}: 根据wallis公式:
∫ − ∞ + ∞ cos ⁡ n − 2 t d t = 2 ⋅ ( 2 n − 3 ) ! ! ( 2 n − 2 ) ! ! ⋅ π 2 \int_{-\infty}^{+\infty}{\cos ^{n-2}t}dt=2\cdot \frac{\left( 2n-3 \right) !!}{\left( 2n-2 \right) !!}\cdot \frac{\pi}{2} +cosn2tdt=2(2n2)!!(2n3)!!2π
= ( 2 n − 3 ) ! ! ( 2 n − 2 ) ! ! π \qquad \qquad =\frac{\left( 2n-3 \right) !!}{\left( 2n-2 \right) !!}\pi =(2n2)!!(2n3)!!π

(2)求极限: lim ⁡ n → ∞ ( b 1 n − 1 ) ∑ i = 0 n − 1 b i n sin ⁡ b 2 i + 1 2 n    ( b > 1 ) \lim\limits_{n\rightarrow \infty} \left( b^{\frac{1}{n}}-1 \right) \sum\limits_{i=0}^{n-1}{b^{\frac{i}{n}}\sin b^{\frac{2i+1}{2n}}}\ \ \left( b>1 \right) nlim(bn11)i=0n1bnisinb2n2i+1  (b>1)

解:
lim ⁡ n → ∞ ( b 1 n − 1 ) ∑ i = 0 n − 1 b i n sin ⁡ b 2 i + 1 2 n \lim_{n\rightarrow \infty} \left( b^{\frac{1}{n}}-1 \right) \sum_{i=0}^{n-1}{b^{\frac{i}{n}}\sin b^{\frac{2i+1}{2n}}} nlim(bn11)i=0n1bnisinb2n2i+1
= lim ⁡ n → ∞ ( b i + 1 n − b i n ) ∑ i = 0 n − 1 sin ⁡ b 2 i + 1 2 n =\lim_{n\rightarrow \infty} \left( b^{\frac{i+1}{n}}-b^{\frac{i}{n}} \right) \sum_{i=0}^{n-1}{\sin b^{\frac{2i+1}{2n}}} =nlim(bni+1bni)i=0n1sinb2n2i+1
考虑 区 间划分 : \text{考虑}区\text{间划分}: 考虑间划分:
Δ i = b i + 1 n − b i n \Delta _i=b^{\frac{i+1}{n}}-b^{\frac{i}{n}} Δi=bni+1bni
由定积分定义 \text{由定积分定义} 由定积分定义
lim ⁡ n → ∞ ( b 1 n − 1 ) ∑ i = 0 n − 1 b i n sin ⁡ b 2 i + 1 2 n = ∫ 1 b sin ⁡ x d x = cos ⁡ 1 − cos ⁡ b \lim_{n\rightarrow \infty} \left( b^{\frac{1}{n}}-1 \right) \sum_{i=0}^{n-1}{b^{\frac{i}{n}}\sin b^{\frac{2i+1}{2n}}}=\int_1^b{\sin x}dx=\cos 1-\cos b nlim(bn11)i=0n1bnisinb2n2i+1=1bsinxdx=cos1cosb
我们经常见到的黎曼积分定义求极限是 \text{我们经常见到的黎曼积分定义求极限是} 我们经常见到的黎曼积分定义求极限是
Δ i = k + 1 n − k n = 1 n \Delta _i=\frac{k+1}{n}-\frac{k}{n}=\frac{1}{n} Δi=nk+1nk=n1
等间距划分,很少遇到这种 \text{等间距划分,很少遇到这种} 等间距划分,很少遇到这种
Δ i = b i + 1 n − b i n \Delta _i=b^{\frac{i+1}{n}}-b^{\frac{i}{n}} Δi=bni+1bni
非线性划分,望大家在学习过程中多些思考理解,少些方法套路

(3)将5个A和5个a有序排列,其中有种序列任意前k个数k=1,2…10,A的个数多于a的个数,例如:(A,a,A,a,A,a,A,A,a,a)满足条件,而(A,a,A,a,A,a,a,A,A,a)不满足,因为当k=7时,有4个a,3个A,试问这种序列有     42      ‾ \underline{\ \ \ 42\ \ \ \ }    42    

解:我们将A视为进栈,a视为出栈,则这种序列对应着一种5个数据元素进出栈的方式,栈的特点是先进后出,不可能空栈出,也不可能满栈进,我们先不考虑无效进出栈的方式,那么10个A或a有五个A总共有 C 10 5 C_{10}^{5} C105种方式,而对于每种错误排序方式如下图:

A
a
A
a
A
a
A
a
a
A

从第九个数据开始出现问题,前八个元素操作导致栈为空,不能再执行第九个元素对应的出栈操作,此时假设我们将之前的九个元素取反(A变为a,a变为A)

则变为:

a
A
a
A
a
A
a
A
A
A

显然这两种序列是一一对应的(把第二种从前往后累加到1时,前面取反就回到第一个序列),而第二种序列的有6个A和4个a,排列方式为 C 10 4 C_{10}^{4} C104种,因此成功有效进出栈的次数只有 C 10 5 − C 10 4 = 42 种 C_{10}^{5}-C_{10}^{4}=42\text{种} C105C104=42

(4)已知:方程 x 2 ln ⁡ a = x 2 ln ⁡ x + a ln ⁡ x x^2\ln a=x^2\ln x+a\ln x x2lna=x2lnx+alnx有三个实根,求 a a a的取值范围

解:先将问题转化为 x 2 ln ⁡ a x 2 + a − ln ⁡ x = 0 \frac{x^2\ln a}{x^2+a}-\ln x=0 x2+ax2lnalnx=0有三个根

x > 0 x>0 x>0,因此问题可以转化为 x ln ⁡ a x + a − ln ⁡ x 2 = 0 \frac{x\ln a}{x+a}-\frac{\ln x}{2}=0 x+axlna2lnx=0有三个根,令 f ( x ) = x ln ⁡ a x + a − ln ⁡ x 2 f\left( x \right) =\frac{x\ln a}{x+a}-\frac{\ln x}{2} f(x)=x+axlna2lnx
f ′ ( x ) = a ln ⁡ a ( x + a ) 2 − 1 2 x f'\left( x \right) =\frac{a\ln a}{\left( x+a \right) ^2}-\frac{1}{2x} f(x)=(x+a)2alna2x1
= − x 2 + ( 2 a ln ⁡ a − 2 a ) x − a 2 2 x ( x + a ) 2 =\frac{-x^2+\left( 2a\ln a-2a \right) x-a^2}{2x\left( x+a \right) ^2} =2x(x+a)2x2+(2alna2a)xa2
f ′ ( x ) f'(x) f(x)必须有两个正根,这样 f ( x ) f\left( x \right) f(x)才能有两个极值点,从而才有可能有三个根
∴ Δ = 4 a 2 ( ln ⁡ 2 a − 2 ln ⁡ a ) > 0 \therefore \Delta =4a^2\left( \ln ^2a-2\ln a \right) >0 Δ=4a2(ln2a2lna)>0
$\text{且}2a\ln a-2a>0\left( \text{保证}为\text{正根} \right) $

我们从而可以得出这个必要条件: a > e 2 a>e^2 a>e2
此时: x 1 = a ln ⁡ a − a − a ln ⁡ 2 a − 2 ln ⁡ a , x_1=a\ln a-a-a\sqrt{\ln ^2a-2\ln a}, x1=alnaaaln2a2lna , x 2 = a ln ⁡ a − a + a ln ⁡ 2 a − 2 ln ⁡ a x_2=a\ln a-a+a\sqrt{\ln ^2a-2\ln a} x2=alnaa+aln2a2lna 代入 f ( x ) f(x) f(x)可得: f ( x 1 ) < 0 , f ( x 2 ) > 0 f\left( x_1 \right) <0\text{,}f\left( x_2 \right) >0 f(x1)<0f(x2)>0
∴ 当 a > e 2 时,一定有三个解 \therefore \text{当} a>e^2\text{时,一定有三个}\text{解} a>e2时,一定有三个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值