数学建模——永冻土层上关于路基热传导问题

问题描述

在永冻土地上铺设道路、飞机跑道和某些结构的地基。分析这类地基的结构,有沥青层、混凝土层、干砂层、石子层、绝缘材料层,再下面是湿的沙土层和冻土层(参见图1)。已知,外界的温度是关于时间的函数,冻土层的温度是不变的零下温度。请回答以下问题:
图1:永冻土地地基结构图

  • 问题1:分析空气温度传入路基规律,各材料层的温度分布;
  • 问题2:由于一些设备的支架不能固定在解冻土层上,必须固定在永冻土层中,因此确定地下土层的解冻位置非常重要,请给出解冻砂土与冻结砂土的分界线;
  • 问题3:请给出各层材料的最佳厚度(结合温度分布、成本和耐用性 );
  • 问题4:请结合我国青藏铁路永冻土层地基进行仿真,并给施工单位给出合理建议。

模型求解

问题一的分析

对于问题一,考虑到冻土面上各点处曲率足够大,将地基层视为互相平行的平面层,建立基于傅里叶定律的一维抛物型偏微分方程模型,由于外界的温度是关于时间的函数,因此可以通过搜集拉萨四季的日温度数据,进行正弦函数拟合,从而得到外界温度随时间变化的拟合函数。将其作为热传导方程的边界条件,根据查阅冻土土层温度为0℃及以下,本组选取 T 0 = 0 T_0=0 T0=0 ℃ 作为热传导方程右边界,在给定一个初值条件下,通过有限差分法,给出精度较高的Crank-Nicolson差分格式,用微商代替微分得到离散的线性方程组,通过追赶法求解线性方程组,得到时间和一维空间维度下的温度分布情况,并对结果进行稳定性分析以及误差检验。

一维耦合抛物型偏微分方程模

热传导方程

根据傅里叶热传导定律得到,导体获取热量微元等式:
d Q = − λ ∇ u ⋅ d S → d t dQ=-\lambda \nabla u\cdot d\overrightarrow{S}dt dQ=λudS dt
考虑问题研究为一维,通过积分以及高斯公式进行化简后得到 t 1 t_1 t1~ t 2 t_2 t2时间段内流入导体热量为:
Q 1 = ∫ t 1 t 2 [ ∫ x 1 x 2 k ∂ 2 u ∂ x 2 d x ] d t Q_1=\int_{t_1}^{t_2}{\left[ \int_{x_1}^{x_2}{k \frac{\partial ^2u}{\partial x^2}dx} \right] dt} Q1=t1t2[x1x2kx22udx]dt
又由于导体内温度升高吸收热量为:
Q 2 = ∫ x 1 x 2 c ρ [ ∫ t 1 t 2 ∂ u ∂ t d t ] d x = ∫ t 1 t 2 [ ∫ t 1 t 2 c ρ ∂ u ∂ x d x ] d t Q_2=\int_{x_1}^{x_2}{c\rho \left[ \int_{t_1}^{t_2}{\frac{\partial u}{\partial t}dt} \right] dx}=\int_{t_1}^{t_2}{\left[ \int_{t_1}^{t_2}{c\rho \frac{\partial u}{\partial x}dx} \right] dt} Q2=x1x2cρ[t1t2tudt]dx=t1t2[t1t2cρxudx]dt
根据能量守恒得到能量关系等式:
Q 1 = Q 2 Q_1 =Q_2 Q1=Q2
从而得到:
∂ u ( x , t ) ∂ t = k c ρ ∂ 2 u i ( x , t ) ∂ x 2 \displaystyle \frac{\partial u\left( x,t \right)}{\partial t} = \displaystyle \frac{k}{c\rho } \displaystyle \frac{\partial ^2u_i\left( x,t \right)}{\partial x^2} tu(x,t)=cρkx22ui(x,t)
其中: k k k为热传导率, c c c为导体比热, ρ \rho ρ为导体干密度。
微元法示意图如图2。
微元法示意图

耦合抛物型偏微分方程

考虑到5层不同地基结构的热传导率、比热以及干密度的不同,建立五个一维热传导方程:
∂ u i ( x , t ) ∂ t = k i c i ρ i ∂ 2 u i ( x , t ) ∂ x 2 , i = 1 ⋯ 5 , \begin{align} \displaystyle \frac{\partial u_i\left( x,t \right)}{\partial t} = \displaystyle \frac{k_i}{c_i\rho _i} \displaystyle \frac{\partial ^2u_i\left( x,t \right)}{\partial x^2},i=1 \cdots 5, \end{align} tui(x,t)=ciρikix22ui(x,t),i=15,
根据Fourier热传导定律,在导热过程中,两相邻地基材料临界面处热流量密度 q ⃗ \vec{q} q 相同,得到热流量密度耦合条件:
k i ∂ u i ( x , t ) ∂ n i ∣ Γ i = k i + 1 ∂ u i + 1 ( x , t ) ∂ n i + 1 ∣ Γ i , i = 1 ⋯ 4 , \begin{align} k_i \displaystyle \frac{\partial u_i\left( x,t \right)}{\partial n_i}|_{\varGamma _i} = k_{i+1} \displaystyle \frac{\partial u_{i+1}\left( x,t \right)}{\partial n_{i+1}}|_{\varGamma _i},i=1 \cdots 4, \end{align} kiniui(x,t)Γi=ki+1ni+1ui+1(x,t)Γi,i=14,
由任意时刻下相邻导体临界面温度相等,从而得到导体传热的临界面温度耦合条件:
u i ( x , t ) ∣ Γ i = u i + 1 ( x , t ) ∣ Γ i , \begin{align} u_i\left( x,t \right) |_{\varGamma _i}=u_{i+1}\left( x,t \right) |_{\varGamma _i}, \end{align} ui(x,t)Γi=ui+1(x,t)Γi,
通过对搜索的拉萨四季日温度数据进行正弦函数二阶拟合得到:
a ( t ) = α i sin ⁡ ( w 1 t + φ i ) + β i sin ⁡ ( w 2 t + θ i ) , i = 1 ⋯ 4 , \begin{align} a(t)=\alpha _i\sin \left( w_1 t+\varphi _i \right) +\beta _i\sin \left( w_2 t+\theta _i \right) ,i=1 \cdots 4, \end{align} a(t)=αisin(w1t+φi)+βisin(w2t+θi),i=14,
由此通过拟合函数作为外界温度的变化函数作为热传导方程的边界条件:
u 0 ( 0 , t ) = a ( t ) , \begin{align} u_0\left( 0,t \right) =a\left( t \right), \end{align} u0(0,t)=a(t),
根据查阅得知冻土层温度为0℃及以下,本组选取 T 0 = 0 T_0 =0 T0=0,作为右边界条件:
u 5 ( L 5 , t ) = T 0 , \begin{align} u_5\left( L_5,t \right) =T_0, \end{align} u5(L5,t)=T0,
最终整理上述公式得到初边值问题的热传导方程:
{ ∂ u i ( x , t ) ∂ t = k i c i ρ i ∂ 2 u i ( x , t ) ∂ x 2 , x ∈ ( L i − 1 , L i ) , k i ∂ u i ( x , t ) ∂ n i ∣ Γ i = k i + 1 ∂ u i + 1 ( x , t ) ∂ n i + 1 ∣ Γ i , u i ( x , t ) ∣ Γ i = u i + 1 ( x , t ) ∣ Γ i , u 0 ( 0 , t ) = a ( t ) , u 5 ( L 5 , t ) = T 0 , \begin{align} \begin{cases} \displaystyle \frac{\partial u_i\left( x,t \right)}{\partial t} = \displaystyle \frac{k_i}{c_i\rho _i} \displaystyle \frac{\partial ^2u_i\left( x,t \right)}{\partial x^2},x\in \left( L_{i-1},L_i \right),\\ k_i \displaystyle \frac{\partial u_i\left( x,t \right)}{\partial n_i}|_{\varGamma _i} = k_{i+1} \displaystyle \frac{\partial u_{i+1}\left( x,t \right)}{\partial n_{i+1}}|_{\varGamma _i},\\ u_i\left( x,t \right) |_{\varGamma _i}=u_{i+1}\left( x,t \right) |_{\varGamma _i},\\ u_0\left( 0,t \right) =a\left( t \right),\\ u_5\left( L_5,t \right) =T_0,\\ \end{cases} \end{align} tui(x,t)=ciρikix22ui(x,t),x(Li1,Li),kiniui(x,t)Γi=ki+1ni+1ui+1(x,t)Γi,ui(x,t)Γi=ui+1(x,t)Γi,u0(0,t)=a(t),u5(L5,t)=T0,

采用CN格式处理

{ u j n + 1 − u j n τ = k i c i ρ i ⋅ [ ( u j + 1 n + 1 − 2 u j n + 1 + u j − 1 n + 1 ) + ( u j + 1 n − 2 u j n + u j − 1 n ) ] 2 h 2 k i u J n − u J − 1 n h = k i + 1 u J + 1 n − u J n h u i ( J , t ) = u i + 1 ( J , t ) u 1 ( 0 , t ) = a ( t ) u 5 ( N , t ) = T 0 J = L i L N \begin{align} \begin{cases} \displaystyle \frac{u_{j}^{n+1}-u_{j}^{n}}{\tau}=\displaystyle \frac{k_i}{c_i\rho _i}\cdot \displaystyle \frac{\left[ \left( u_{j+1}^{n+1}-2u_{j}^{n+1}+u_{j-1}^{n+1} \right) +\left( u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n} \right) \right]}{2h^2}\\ k_i\frac{u_{J}^{n}-u_{J-1}^{n}}{h}=k_{i+1}\frac{u_{J+1}^{n}-u_{J}^{n}}{h}\\ u_i\left( J,t \right) =u_{i+1}\left( J,t \right)\\ u_1\left( 0,t \right) =a\left( t \right)\\ u_5\left( N,t \right) =T_0\\ J=\frac{L_i}{L}N\\ \end{cases} \end{align} τujn+1ujn=ciρiki2h2[(uj+1n+12ujn+1+uj1n+1)+(uj+1n2ujn+uj1n)]kihuJnuJ1n=ki+1huJ+1nuJnui(J,t)=ui+1(J,t)u1(0,t)=a(t)u5(N,t)=T0J=LLiN

问题一结果展示

在这里插入图片描述

后续问题

。。。
在这里插入图片描述

  • 6
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
热防护服是高温环境工作人群的重要保障,本文通过建立数学模型对多层热防护织物内部传热规律进行研究,建立防护服装内部的热传递模型,从而解决外界环境温度一定时,防护服各层随时间变化的温度分布问题和各层织物材料的最优厚度问题。 假人处于恒高温环境中,不考虑防护服织物的边缘热量损失,且人体和防护服的空气间隔很小,忽略空气的自然对流,只考虑热传导;故可以把织物视为导热多层平面,且属于非稳态导热过程。建立“高温环境-防护服-假人体表”系统;由傅里叶定律描述导热速率,将温度的变化转是能量传递的结果,将其看作电磁波的辐射和介质中对电磁波的传输问题。 防护服中的温度分布由时间和防护服与外界热源相对位置二者共同决定的二元函数,因为二元偏微分方程的解析解无法精确求出,所以对时间进行离散化分析,分析以一秒为单位时间的温度变化与位置的关系,从而对问题进行简化。 针对问题一,将各层的导热过程抽象简化处理转换为平板中非稳态导热过程,在平板厚度的四周绝热良好时,从传热的角度上将问题简化为一个一维传热问题;从假人皮肤外侧的温度变化入手,根据热量的流向和生热情况从第Ⅳ层、第III层、第Ⅱ层、第Ⅰ层反向递推出和外界环境温度的关系,引入能温转换系数,建立假人皮肤外侧温度变化和外界温度的等式关系,最后利用最小二乘法设计程序,求出每一阶段的温度分布平差之后的结果,从而得到温度分布。 针对问题二,考虑在一小时内该系统温度变化,用时间限制与温度阈值限制作为约束条件的规划问题,沿用离散化分析手段,由假人体表温度逆推防护服第Ⅱ层厚度的表达式,建立其与外界温度的关系,并寻求满足条件下的最优解。 针对问题三,考虑在给定半小时时间内该系统温度变化,添加更多的约束条件,对问题二中的求解模型进行进一步优化,利用lingo寻找第Ⅱ、Ⅳ层厚度的最优解,并沿用前问中离散化分析手段,由假人体表温度逆推防护服相关设计参数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值