如何租用云GPU跑深度学习?AutoDL、恒源云极简高效使用教程

平台推荐

恒源云

在这里插入图片描述

优点:

  • 使用oss工具,传输文件更快更方便
  • 帮助文档详细
  • 优惠券活动多

缺点:

  • 显卡数量少
  • 价格比autodl略高

官网

官网

注册链接:

点击链接

AutoDL

在这里插入图片描述

优点:

  • 价格全网最低
  • 机型丰富数量多

缺点:

  • 传输文件较慢

官网

官网

注册链接:

点击链接注册得优惠券

使用流程

恒源云

注册登录充值

点击上文链接完成注册,登录后会赠送代金券,完成新手任务或实名认证等也可获得代金券。代金券只能在代金券专区使用,通常只有3090可选。
也可以不用代金券直接充值。

数据上传

  1. 在本地将代码、数据集打包压缩进同一压缩文件;
  2. 点击下载oss工具
  3. 将oss工具和上文压缩文件放入同一文件夹下,打开oss工具,输入login,根据提示输入注册手机号及密码
  4. 显示登陆成功后,执行cp 个人数据.zip oss://datasets/即可开始上传(“个人数据”替换为自己的压缩文件名)。

租用实例并下载数据至实例

  1. 进入“云市场”,选择好机器后点击“立即租”,若首次使用需选择官方镜像;
  2. 镜像创建成功后打开本地PyCharm或VSCode进行远程链接,具体方法参考PyCharmVSCode
  3. 链接成功后在控制台或JupeterLab执行oss cp oss://datasets/个人数据.zip /hy-tmp/自定义文件夹名/,则将刚上传的压缩文件下载至实例的/hy-tmp/自定义文件夹名/ 文件夹下,在本地IDE中打开这个文件夹
  4. 解压。unzip 个人数据.zip

自行配置实验所需环境后就可以开始实验啦

训练结束后

  1. 可通过刚才的上传、下载方法将所需要的权重、实验结果等传输到本地电脑,或通过FileZilla传输,使用方法:FileZilla
  2. 进入恒源云控制台,选择关机,在“更多”处选择“创建备份镜像”,创建好后无需每次都配置环境。

AutoDL

使用方法同恒源云大致相同,但不能通过oss传输文件,只能通过网盘传输,传输方式

AutoDLAutomated Deep Learning)是一种自动化深度学习的方法,它旨在化和加速深度学习模型的训练和调优过程。AutoDL可以自动选择和配置适合任务的神经网络结构、超参数和优化算法,从而减少了手动调整的工作量。 要手动配置使用GPU进行AutoDL,您需要完成以下步骤: 1. 安装CUDA和cuDNN:首先,您需要安装适用于您的GPU的CUDA和cuDNN。CUDA是NVIDIA提供的用于GPU计算的并行计算平台,而cuDNN是用于深度神经网络的GPU加速库。 2. 安装深度学习框架:选择一个适合您的任务和喜好的深度学习框架,如TensorFlow、PyTorch或Keras,并按照其官方文档进行安装。 3. 配置GPU支持:在深度学习框架中,您需要启用GPU支持。通常,这可以通过设置环境变量或在代码中指定设备为GPU来完成。 4. 加载数据集:准备您的数据集并将其加载到深度学习框架中。这可能涉及数据预处理、划分训练集和测试集等步骤。 5. 构建模型:根据您的任务需求,选择适当的神经网络结构,并使用深度学习框架构建模型。这可能包括定义网络层、选择激活函数和损失函数等。 6. 配置训练参数:设置训练过程中的超参数,如学习率、批量大小和训练轮数。这些参数的选择可能需要一些经验和实验。 7. 训练模型:使用GPU进行模型训练。在训练过程中,深度学习框架会自动利用GPU加速计算,从而提高训练速度。 8. 评估和调优:在训练完成后,使用测试集对模型进行评估,并根据评估结果进行调优。这可能涉及调整超参数、尝试不同的网络结构或使用正则化技术等。 请注意,手动配置和使用GPU进行AutoDL需要一定的深度学习GPU知识。如果您是初学者或对深度学习不太熟悉,建议先学习深度学习的基础知识,并尝试使用已经配置好GPU支持的深度学习环境。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值