深度学习基础知识之通道数channels

本文解释了深度学习模型中图片尺寸的含义,特别是352x352x3的含义,强调通道数在CNN中的作用,以及如何使用Python的OpenCV库查看图像通道数。
摘要由CSDN通过智能技术生成

大多数的深度学习模型,模型上会展示图片的尺寸,如:352x352x3
这里面352x352表示的是像素大小,即高和宽都为352个像素,而3表示的是通道数,指输入的是3通道的RGB图像,每个颜色通道的取值范围为0-255,可以表示256种颜色强度。通过不同的颜色组合,可以表示出不同的颜色。
在cnn种,通道数就是用于提取特征的滤波器的数量(卷积核数量),在卷积过程中,每个滤波器会对输入特征图进行卷积操作,生成一个新的特征图,通道数就是指卷积后生成的特征图的数量,每个通道可以表示不同的特征信息,例如图像的颜色、边缘、纹理等。

python种的openv库可以轻松地查看图像的通道数:

import cv2
image=cv2.imread('image.jpg')
channels=image.shape[2]
print("图像通道数:",channels)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值