1、GenAI的核心指标,不是节省了多少时间/人力(效率属性),而是提高了多少“转化率”(利润属性)。
2、使用AI时,把AI当成人;设计AI时,把人当成AI。
3、未来AI企业,方向定位将不是按照To C/To B来划分,而是按照To 人/To AI来划分。
4、2024年模型公司的生死线:在技术上,年内超越GPT-4;在算力上,年内万张卡集群,而且要能用起来。
5、开源模型会打掉很多闭源模型的商业价值——比如你把GPT-3.5水平的模型开源了,大家就不一定再调用OpenAI的API接口。
6、AGI不是一蹴而就,不太像是憋几年大招在某年实现AGI就把所有秒杀——关键词是“渐进式解锁”。
7、模型最关键的能力是Reasoning推理能力,后面要有复杂推理能力,才能完成有经济价值的任务。Coding代码能力很重要,可能是AGI落地最早信号,既是一个走向AGI的能力,也可能是核心产品,改变软件生产方式。
8、现阶段产品价值的来源,很大程度上依赖于模型本身,即模型的输入和输出决定了产品的整体交互。目前的产品方法还是技术driven,而非产品driven。对于GenAI的产品来说,由于「算法即产品」的特点,对产品功能的设计将逐渐等同于对算法能力的设计。
9、GenAI行业共识:一是Scaling Laws;二是实现同样精度的模型,需要的算力和资金投入可能每年降几倍,因为算法和学术界公开的东西越来越多,很多人会做自由探索;三是把精力放在提高数据质量上,现阶段收益更大。
10、做移动互联网产品,大家特别在意有没有挖到一个用户痛点。但去年DAU超百万的六七个AI-Native产品都不是针对痛点设计的,是把一个突破性技术释放,慢慢变成了产品。反而是后面针对性设计功能时都不太成功,比如ChatGPT Plugins和GPTs。如果技术进步速度慢下来,又会变成产品推动的方式。
11、对模型的理解基本上等同于对产品的理解。产品越往下做,对模型理解肯定要越深。如果没有对模型的强掌控力,就很难掌握产品成本的变化,也无法调教对用户的响应时间。
12、一个产品所能兑现的商业价值将等同于其对信息商品经济环节优化产生的价值,所以,对任何环节产生更加本质、更加广泛的优化必然带来更高价值的产品。除了要进行「Product Market Fit」外,我们需要同等重视「Product Model Fit」,前者决定了产品的商业模式,后者则决定了产品的技术可行性。
13、用户的消费环节行为数据将可以直接被用来做信息生产能力的优化,这将会是GenAI大产品与传统软件产品的一个显著不同。
14、AI将从辅助人类的Copilot转变为真正能替代一些人类工作的Agent。AI将更像是一个同事,而不仅仅是一个工具,这点在软件工程、客服等行业已经初步显现。
15、与其盲目追求技术上的突破,不如专注于找到产品与市场的契合点(PMF)。即使技术再先进,如果不能在市场上找到合适的应用场景和商业模式,也是没有意义的。
16、GenAI产品有很可能会打破产品设计的“用户规模马尔萨斯陷阱”,即用极简的产品设计在保持低使用门槛的前提下,个性化的满足复杂、海量的用户需求。
17、信息的生产角色从人类开始向人类+算法过渡,这个过程将逐步实现信息内容生产的工业化、自动化和智能化,这意味着更高的内容生产效率以及内容生产成本边际递减。
18、信息的使用方式从消费离线内容向消费实时内容变化,与信息生产逻辑变化相对应,用户使用信息的方式将从消费已经生产好的信息变为消费实时生成的信息。与此同时,内容形式将从静态内容逐渐向可交互内容变化(比如对话实际上可被视为可交互的文本)。
19、获取的信息的方式从个性化向定制化变化,LLM时代产品提供信息的方式将实现针对不同用户的定制化,即为特定用户生产专属信息,这在带来更好的信息消费体验的同时也会进一步增加信息茧房效应。
20、对内容的控制感是一种即将被LLM技术激活的潜在需求,这将会成为AI-Native应用的一个重要差异化体验。
21、如何得到更高智慧密度的信息,将决定LLM媒介对人类智慧延伸的范围和程度,对AI-Native产品的设计来说,当互联网已有的公开信息无法拉开LLM的智力差距时,通过获得、压缩与自己场景相关的更高智慧密度数据,将成为产品差异化的关键。
22、未来的AI生态中,通用大模型负责解决长尾问题,高价值的业务场景将由专业AI系统来解决。
23、自然语言交互提供了更好的灵活性,但也损失了产品的可理解性。LLM对交互设计来说,其价值在于增加了一种新的维度,应当与其他的交互维度(如GUI)配合使用。
24、对于传统的软件产品思路,交互一定要是清晰、准确、具体的,而这与LLM的生成技术显然存在冲突,所以AI-Native产品势必会展现出一种新的交互思想,即:面向不确定性设计。
25、基座模型需要的文本数据目前总量已经不够了,后面大方向是Self-play(自对弈)和合成数据。Self-play就是AlphaGoZero自己和自己下棋形成数据,合成数据包括3D引擎生成视频数据等。
关于AIGC、LLM、GenAI、AGI的解释:
- AIGC:指用Stable Diffusion或Midjourney生成图像内容,后来泛指用Al生成音乐、图像、视频等内容。
- LLM:指NLP领域的大语言模型,如ChatGPT。
- GenAl:生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了LLM和AIGC。
- AGI:指通用人工智能,部分人觉得LLM具有AGl潜力,LeCun反对。
关于+AI、AI+、AI-Native产品的解释:
- AI-by side:+AI产品,在原有业务的基础上加上AI能力,比如Microsoft 365 Copilot,Notion。
- AI-inside:AI+产品,AI是产品的一个核心组件,离开了AI也能用,但是缺少亮点,比如Arc浏览器。
- AI-Based:AI Native产品,完全基于AI开发的产品,离开AI就不能用,比如Suno。