Description
You are given N positive integers, denoted as x1, x2 ... xN. Then give you some intervals [l, r]. For each interval, you need
to find a number x to make |x-xl| + |x-x2| + … + |x-xr| as small as possible!
Input
The first line is an integer T (T <= 6), indicating the number of test cases. For each test case, an integer N
(1 <= N <= 100,000) comes first. Then comes N positive integers x (1 <= x <= 1,000, 000,000) in the next line.
Finally, comes an integer Q (1 <= Q <= 5,000), indicting there are Q queries. Each query consists of two
integers l, r (1 <= l <= r <= N), meaning the interval you should deal with.
Output
For the k-th test case, first output “Case #k:” in a separate line. Then output Q lines, each line
is x, which make as small as possible. If there are several integers x satisfying it, please output
the minimum x. Output a blank line after every test case.
SampleInput
2
5
3 6 2 2 4
2
2 5
1 3
2
7 7
2
1 2
1 1
SampleOutput
Case #1:
2
3
Case #2:
7
7
Hint
Huge input,scanf is recommended.
解题思路:找到依次相减最小的数,其实就是找排序后的数组中,中间的数,如果数列长度是奇数,则就是中间的数,如果数列长度是偶数,则是中间两个数中小的那个数。(在这里排序算法使用快速排序~)
package OJ; import java.util.*; public class P24_temp { /** * 快速排序,伪代码: * QUICKSORT(A, p, r) * 1 if p < r * 2 then q ← PARTITION(A, p, r) * 3 QUICKSORT(A, p, q - 1) * 4 QUICKSORT(A, q + 1, r) * * PARTITION(A, p, r) * 1 x ← A[r] * 2 i ← p - 1 * 3 for j ← p to r - 1 * 4 do if A[j] ≤ x * 5 then i ← i + 1 * 6 exchange A[i] ↔ A[j] * 7 exchange A[i + 1] ↔ A[r] * 8 return i + 1 * 复杂度,最坏情况下:Θ(n^2) * 一般平衡情况:Θ(nlgn) * @param array 待排数组 * @param from 起始位置 * @param to 终止位置 */ public static void quickSort(int[] array, int from, int to) { if (from < to) { int temp = array[to]; int i = from - 1; for (int j = from; j < to; j++) { if (array[j] <= temp) { i++; int tempValue = array[j]; array[j] = array[i]; array[i] = tempValue; } } array[to] = array[i+1]; array[i+1] = temp; quickSort(array, from, i); quickSort(array, i + 1, to); } } public static void main(String[] args) { int caseNum = 0; Scanner in = new Scanner (System.in); caseNum = in.nextInt(); ArrayList<ArrayList<Integer>> results = new ArrayList<ArrayList<Integer>>(); for(int c=0; c<caseNum; c++){ int n = in.nextInt(); int[] queue = new int [n+1]; for(int i=1; i<=n; i++){ queue[i] = in.nextInt(); } // int[] copy = queue.clone(); int groupNum = in.nextInt(); int[] interval = new int[groupNum*2+1]; for(int j=1; j<=groupNum*2; j++){ interval[j] = in.nextInt(); } ArrayList<Integer> result = new ArrayList<Integer>(); for(int k=1; k<=groupNum; k++){ int[] copy = queue.clone(); quickSort(copy, interval[k*2-1], interval[2*k]); int mid = copy[(interval[2*k-1] + interval[2*k])/2]; result.add(mid); } results.add(result); } for(int t=0; t<results.size(); t++){ int order = t+1; System.out.println("Case#" + order +":"); for(int p=0; p<results.get(t).size(); p++){ System.out.println(results.get(t).get(p)); } } } }