非线性系统反馈线性化实例
- 非线性系统反馈线性化知识:
https://blog.csdn.net/acknole/article/details/121313994 - 系统状态空间模型:
x ˉ ˙ 1 = x ˉ 1 2 + x ˉ 2 + u 1 x ˉ ˙ 2 = x ˉ 1 + x ˉ 2 2 + u 2 y 1 = x ˉ 1 y 2 = x ˉ 2 \dot{\bar{x}}_1=\bar{x}^2_1+\bar{x}_2+u_1\\ \dot{\bar{x}}_2=\bar{x}_1+\bar{x}^2_2+u_2\\ y_1=\bar{x}_1\\ y_2=\bar{x}_2 xˉ˙1=xˉ12+xˉ2+u1xˉ˙2=xˉ1+xˉ22+u2y1=xˉ1y2=xˉ2 - 系统标准形式
f ( x ) = [ x ˉ 1 2 + x ˉ 2 x ˉ 1 + x ˉ 2 2 ] g 1 ( x ) = [ 1 0 ] g 2 ( x ) = [ 0 1 ] h 1 ( x ) = x ˉ 1 h 2 ( x ) = x ˉ 2 f(x)=\begin{bmatrix} \bar{x}^2_1+\bar{x}_2\\ \bar{x}_1+\bar{x}^2_2\\ \end{bmatrix}\\ g_1(x)=\begin{bmatrix} 1\\0 \end{bmatrix}\\ g_2(x)=\begin{bmatrix} 0\\1 \end{bmatrix}\\ h_1(x)=\bar{x}_1\\ h_2(x)=\bar{x}_2 f(x)=[xˉ12+xˉ2xˉ1+xˉ22]g1(x)=[10]g2(x)=[01]h1(x)=xˉ1h2(x)=xˉ2 - 系统的相对阶
r
1
=
1
,
r
2
=
1
r_1=1,r_2=1
r1=1,r2=1
a ( x ) = [ L g 1 L f r 1 − 1 h 1 ( x ) L g 2 L f r 1 − 1 h 1 ( x ) L g 1 L f r 2 − 1 h 2 ( x ) L g 2 L f r 2 − 1 h 2 ( x ) ] = [ 1 0 0 1 ] b ( x ) = [ L f r 1 h 1 ( x ) L f r 2 h 2 ( x ) ] = [ x ˉ 1 2 + x ˉ 2 x ˉ 1 + x ˉ 2 2 ] a(x)=\begin{bmatrix} L_{g_1}L^{r_1-1}_fh_1(x)&L_{g_2}L^{r_1-1}_fh_1(x)\\ L_{g_1}L^{r_2-1}_fh_2(x)&L_{g_2}L^{r_2-1}_fh_2(x)\\ \end{bmatrix} = \begin{bmatrix} 1&0\\0&1 \end{bmatrix}\\ b(x)=\begin{bmatrix} L^{r_1}_fh_1(x)\\ L^{r_2}_fh_2(x) \end{bmatrix}=\begin{bmatrix} \bar{x}^2_1+\bar{x}_2\\ \bar{x}_1+\bar{x}^2_2 \end{bmatrix} a(x)=[Lg1Lfr1−1h1(x)Lg1Lfr2−1h2(x)Lg2Lfr1−1h1(x)Lg2Lfr2−1h2(x)]=[1001]b(x)=[Lfr1h1(x)Lfr2h2(x)]=[xˉ12+xˉ2xˉ1+xˉ22] - 系统的反馈控制率:
v = a ( x ) u + b ( x ) [ v 1 v 2 ] = [ 1 0 0 1 ] [ u 1 u 2 ] + [ x ˉ 1 2 + x ˉ 2 x ˉ 1 + x ˉ 2 2 ] v=a(x)u+b(x)\\ \begin{bmatrix} v_1\\v_2 \end{bmatrix}=\begin{bmatrix} 1&0\\0&1 \end{bmatrix} \begin{bmatrix} u_1\\u_2 \end{bmatrix} +\begin{bmatrix} \bar{x}^2_1+\bar{x}_2\\ \bar{x}_1+\bar{x}^2_2 \end{bmatrix} v=a(x)u+b(x)[v1v2]=[1001][u1u2]+[xˉ12+xˉ2xˉ1+xˉ22] - 系统的线性模型:
x ˙ = A x + B v [ x ˙ 1 x ˙ 2 ] = [ 0 0 0 0 ] [ x 1 x 2 ] + [ 1 0 0 1 ] [ v 1 v 2 ] \dot{x}=Ax+Bv\\ \begin{bmatrix} \dot{x}_1\\ \dot{x}_2\\ \end{bmatrix} =\begin{bmatrix} 0&0\\0&0 \end{bmatrix} \begin{bmatrix} x_1\\x_2 \end{bmatrix} +\begin{bmatrix} 1&0\\0&1 \end{bmatrix} \begin{bmatrix} v_1\\v_2 \end{bmatrix} x˙=Ax+Bv[x˙1x˙2]=[0000][x1x2]+[1001][v1v2]